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19.1 Tables

Greek Alphabet

International System of Units (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weigh
Measures (CGPM) in 1960. It is a coherent system of units built from seven SI base units, one for each
of the seven dimensionally independent base quantities: the meter, kilogram, second, ampere,
mole, and candela, for the dimensions length, mass, time, electric current, thermodynamic temp
amount of substance, and luminous intensity, respectively. The definitions of the SI base units ar
below. The SI derived units are expressed as products of powers of the base units, analogous 
corresponding relations between physical quantities but with numerical factors equal to unity.

In the International System there is only one SI unit for each physical quantity. This is eithe
appropriate SI base unit itself or the appropriate SI derived unit. However, any of the approved d
prefixes, called SI prefixes, may be used to construct decimal multiples or submultiples of SI units

It is recommended that only SI units be used in science and technology (with SI prefixes 
appropriate). Where there are special reasons for making an exception to this rule, it is recomm
always to define the units used in terms of SI units. This section is based on information supp
IUPAC.

Greek
Letter

Greek
Name

English
Equivalent

Greek
Letter

Greek
Name

English
Equivalent

Α    α Alpha a Ν    ν Nu n
Β    β Beta b Ξ    ξ Xi x
Γ    γ Gamma g Ο    ο Omicron o
∆    δ Delta d Π    π Pi p
Ε    ε Epsilon e Ρ    ρ Rho r
Ζ    ζ Zeta z Σ    σ    ς Sigma s
Η    η Eta e Τ    τ Tau t
Θ    θ    ϑ Theta th Υ    υ Upsilon u
Ι      ι Iota i Φ    φ    ϕ Phi ph
Κ    κ Kappa k Χ    χ Chi ch
Λ    λ Lambda l Ψ    ψ Psi ps
Μ    µ Mu m Ω    ω Omega o
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Definitions of SI Base Units

Meter: The meter is the length of path traveled by light in vacuum during a time interval of 1/299
458 of a second (17th CGPM, 1983).
Kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype 
kilogram (3rd CGPM, 1901).
Second: The second is the duration of 9 192 631 770 periods of the radiation corresponding 
transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th C
1967).
Ampere: The ampere is that constant current which, if maintained in two straight parallel conduct
infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would pr
between these conductors a force equal to 2 × 10–7 newton per meter of length (9th CGPM, 1958).
Kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodyn
temperature of the triple point of water (13th CGPM, 1967).
Mole: The mole is the amount of substance of a system which contains as many elementary en
there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entitie
be specified and may be atoms, molecules, ions, electrons, or other particles, or specified groups
particles (14th CGPM, 1971). Examples of the use of the mole:

• 1 mol of H2 contains about 6.022 × 1023 H2 molecules, or 12.044 × 1023 H atoms.

• 1 mol of HgCl has a mass of 236.04 g.

• 1 mol of Hg2Cl2 has a mass of 472.08 g.

• 1 mol of has a mass of 401.18 g and a charge of 192.97 kC.

• 1 mol of Fe0.91 S has a mass of 82.88 g.

• 1 mol of e– has a mass of 548.60 µg and a charge of –96.49 kC.

• 1 mol of photons whose frequency is 1014 Hz has energy of about 39.90 kJ.

Candela: The candela is the luminous intensity, in a given direction, of a source that emits monochro
radiation of frequency 540 × 1012 Hz and that has a radiant intensity in that direction of (1/683) w
per steradian (16th CGPM, 1979).

Names and Symbols for the SI Base Units

SI Derived Units with Special Names and Symbols

Physical Quantity Name of SI Unit Symbol for SI Unit

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Physical Quantity
Name of
SI Unit

Symbol for
SI Unit

Expression in Terms of SI 
Base Units

Frequencya hertz Hz s–1

Force newton N m · kg · s–2

Pressure, stress pascal Pa N · m–2 = m–1 · kg · s–2

Energy, work, heat joule J N · m = m2 · kg · s–2

Power, radiant flux watt W J · s–1 = m2 · kg · s–3

Electric charge coulomb C A · s

Hg2
2+
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Units in Use Together with the SI

These units are not part of the SI, but it is recognized that they will continue to be used in appr
contexts. SI prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar;
electronvolt, MeV; and kilotonne, kt.

Electric potential, electromotive force volt V J · C–1 = m2 · kg · s–3 · A–1

Electric resistance ohm Ω V · A–1 = m2 · kg · s–3 · A–2

Electric conductance siemens S Ω–1 = m–2 · kg–1 · s4 · A2

Electric capacitance farad F C · V–1 = m–2 · kg–1 · s4 · A2

Magnetic flux density tesla T V · s · m–2 = kg · s–2 · A–1

Magnetic flux weber Wb V · s = m2 · kg · s–2 · A–1

Inductance henry H V · A–1 · s = m2 · kg · s–2 · A–2

Celsius temperatureb degree Celsius °C K
Luminous flux lumen lm cd · sr
Illuminance lux lx cd · sr · m–2

Activity (radioactive) becquerel Bq s–1

Absorbed dose (or radiation) gray Gy J · kg–1 = m2 · s–2

Dose equivalent (dose equivalent index) sievert Sv J · kg–1 = m2 · s–2

Plane angle radian rad 1 = m · m–1

Solid angle steradian sr 1 = m2 · m–2

a For radial (circular) frequency and for angular velocity the unit rad s–1, or simply s–1, should be used, and 
this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles 
per second.

b The Celsius temperature θ is defined by the equation

q/°C = T/K = 237.15

The SI unit of Celsius temperature interval is the degree Celsius, °C, which is equal to the kelvin, K. °C
should be treated as a single symbol, with no space between the ° sign and the letter C. (The symbol °K,
and the symbol °, should no longer be used.)

Physical Quantity Name of Unit Symbol for Unit Value in SI Units

Time minute min 60 s
Time hour h 3600 s
Time day d 86 400 s
Plane angle degree ° (π/180) rad
Plane angle minute ′ (π/10 800) rad
Plane angle second ″ (π/648 000) rad
Length angstroma Å 10–10 m
Area barn b 10–28 m2

Volume liter l, L dm3 = 10–3 m3

Mass tonne t Mg = 103 kg
Pressure bara bar 105 Pa = 105 N · m–2

Energy electronvoltb eV (= e × V) ≈ 1.60218 × 10–19 J
Mass unified atomic mass unitb,c u (= ma(12C)/12) ≈ 1.66054 × 10–27 kg

a The angstrom and the bar are approved by CIPM for “temporary use with SI units,” until CIPM 
makes a further recommendation. However, they should not be introduced where they are not 
used at present.

b The values of these units in terms of the corresponding SI units are not exact, since they depend 
on the values of the physical constants e (for the electronvolt) and NA (for the unified atomic mass 
unit), which are determined by experiment.

c The unified atomic mass unit is also sometimes called the dalton, with symbol Da, although the 
name and symbol have not been approved by CGPM.

Physical Quantity
Name of
SI Unit

Symbol for
SI Unit

Expression in Terms of SI 
Base Units
© 1999 by CRC Press LLC



Mathematics 19-5
Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

Conversion Factors — Metric to English

Conversion Factors — English to Metric

Multiple or
Submultiple Prefix Symbol

Multiple or
Submultiple Prefix Symbol

1018 exa E 10–1 deci d
1015 peta P 10–2 centi c
1012 tera T 10–3 milli m
109 giga G 10–6 micro µ (Greek mu)
106 mega M 10–9 nano n
103 kilo k 10–12 pico p
102 hecto h 10–15 femto f
10 deca da 10–18 atto a

To Obtain Multiply By

Inches Centimeters 0.393 700 787 4
Feet Meters 3.280 839 895
Yards Meters 1.093 613 298
Miles Kilometers 0.621 371 192 2
Ounces Grams 3.527 396 195 × 10–2

Pounds Kilograms 2.204 622 622
Gallons (U.S. liquid) Liters 0.264 172 052 4
Fluid ounces Milliliters (cc) 3.381 402 270 × 10–2

Square inches Square centimeters 0.155 000 310 0
Square feet Square meters 10.763 910 42
Square yards Square meters 1.195 990 046
Cubic inches Milliliters (cc) 6.102 374 409 × 10–2

Cubic feet Cubic meters 35.314 666 72
Cubic yards Cubic meters 1.307 950 619

To Obtain Multiply By a

Microns Mils 25.4
Centimeters Inches 2.54
Meters Feet 0.3048
Meters Yards 0.9144
Kilometers Miles 1.609 344
Grams Ounces 28.349 523 13
Kilograms Pounds 0.453 592 37
Liters Gallons (U.S. liquid) 3.785 411 784
Millimeters (cc) Fluid ounces 29.573 529 56
Square centimeters Square inches 6.451 6
Square meters Square feet 0.092 903 04
Square meters Square yards 0.836 127 36
Milliliters (cc) Cubic inches 16.387 064
Cubic meters Cubic feet 2.831 684 659 × 10–2

Cubic meters Cubic yards 0.764 554 858

a Boldface numbers are exact; others are given to ten significant 
figures where so indicated by the multiplier factor.
© 1999 by CRC Press LLC



19-6 Section 19
Conversion Factors — General

Temperature Factors

To Obtain Multiply By a

Atmospheres Feet of water @ 4°C 2.950 × 10–2

Atmospheres Inches of mercury @ 0°C 3.342 × 10–2

Atmospheres Pounds per square inch 6.804 × 10–2

Btu Foot-pounds 1.285 × 10–3

Btu Joules 9.480 × 10–4

Cubic feet Cords 128
Degree (angle) Radians 57.2958
Ergs Foot-pounds 1.356 × 10–7

Feet Miles 5280
Feet of water @ 4°C Atmospheres 33.90
Foot-pounds Horsepower-hours 1.98 × 106

Foot-pounds Kilowatt-hours 2.655 × 106

Foot-pounds per minute Horsepower 3.3 × 104

Horsepower Foot-pounds per second 1.818 × 10–3

Inches of mercury @ 0°C Pounds per square inch 2.036
Joules Btu 1054.8
Joules Foot-pounds 1.355 82
Kilowatts Btu per minute 1.758 × 10–2

Kilowatts Foot-pounds per minute 2.26 × 10–5

Kilowatts Horsepower 0.745712
Knots Miles per hour 0.868 976 24
Miles Feet 1.894 × 10–4

Nautical miles Miles 0.868 976 24
Radians Degrees 1.745 × 10–2

Square feet Acres 43 560
Watts Btu per minute 17.5796

a Boldface numbers are exact; others are given to ten significant figures where so 
indicated by the multiplier factor.

° = °( ) +

= ( ) −

° = °( ) −[ ]
= −

= ( ) +

F C

Fahrenheit temperature temperature in kelvins

C F

Celsius temperature temperature in kelvins 273.15

Fahrenheit temperature Celsius temperature

9 5 32

1 8 459 67

5 9 32

1 8 32

. .

.
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Mathematics 19-7
Conversion of Temperatures

Physical Constants

General
Equatorial radius of the earth = 6378.388 km = 3963.34 miles (statute)
Polar radius of the earth = 6356.912 km = 3949.99 miles (statute)
1 degree of latitude at 40° = 69 miles
1 international nautical mile = 1.150 78 miles (statute) = 1852 m = 6076.115 ft
Mean density of the earth = 5.522 g/cm3 = 344.7 lb/ft3

Constant of gravitation (6.673 ± 0.003) × 10–8 · cm3 · g–1 · s–2

Acceleration due to gravity at sea level, latitude 45° = 980.6194 cm/s2 = 32.1726 ft/s2

Length of seconds pendulum at sea level, latitude 45° = 99.3575 cm = 39.1171 in.
1 knot (international) = 101.269 ft/min = 1.6878 ft/s = 1.1508 miles (statute)/h
1 micron = 10–4 cm
1 angstrom = 10–8 cm
Mass of hydrogen atom = (1.673 39 ± 0.0031) × 10–24 g
Density of mercury at 0°C = 13.5955 g/mL
Density of water at 3.98°C = 1.000 000 g/mL
Density, maximum, of water, at 3.98°C = 0.999 973 g/cm3

Density of dry air at 0°C, 760 mm = 1.2929 g/L
Velocity of sound in dry air at 0°C = 331.36 m/s – 1087.1 ft/s
Velocity of light in vacuum = (2.997 925 ± 0.000 002) × 1010 cm/s
Heat of fusion of water, 0°C = 79.71 cal/g
Heat of vaporization of water, 100°C = 539.55 cal/g
Electrochemical equivalent of silver 0.001 118 g/s international amp
Absolute wavelength of red cadmium light in air at 15°C, 760 mm pressure = 6438.4696 Å
Wavelength of orange-red line of krypton 86 = 6057.802 Å

π Constants
π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511

1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689 19291 48091
π2 = 9.8690 44010 89358 61883 44909 99876 15113 53136 99407 24079

loge π = 1.14472 98858 49400 17414 34273 51353 05871 16472 94812 91531
log10 π = 0.49714 98726 94133 85435 12682 88290 89887 36516 78324 38044

= 0.39908 99341 79057 52478 25035 91507 69595 02099 34102 92128

Constants Involving e
e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69996

1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458 11131 03177
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803 15570 55185

M = log10 e = 0.43429 44819 03251 82765 11289 18916 60508 22943 97005 80367
1/M = loge 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011 01488 62877

log10 M = 9.63778 43113 00536 78912 29674 98645 – 10

From To From To

Fahrenheit Celcius
Celsius Fahrenheit

Kelvin
tF = (tc × 1.8) + 32
TK = tc + 273.15

Rankine TR = (tc + 273.15) × 18

Kelvin
Kelvin Celsius

Rankine
tc = TK – 273.15
TR = Tk × 1.8

Rankine TR = tF + 459.67 Rankine Fahrenheit tF = TR – 459.67
Kelvin

t
t

C
F=

− 32

1 8.

T
t

k
F=

−
+

32

1 8
273 15

.
.

T
T

K
R=

1 8.

log10 2π
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19-8 Section 19
Numerical Constants
= 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695
= 1.25992 10498 94873 16476 72106 07278 22835 05702 51464 70151

loge 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026
log10 2 = 0.30102 99956 63981 19521 37388 94724 49302 67881 89881 46211

= 1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81039
= 1.44224 95703 07408 38232 16383 10780 10958 83918 69253 49935

loge 3 = 1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275
log10 3 = 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070

Symbols and Terminology for Physical 
and Chemical Quantities

Name Symbol Definition SI Unit

Classical Mechanics

Mass m kg
Reduced mass µ µ = m1m2/(m1 + m2) kg
Density, mass density ρ ρ = m/V kg · m–3

Relative density d d = ρ/ρθ 1
Surface density ρA,ρS ρa = m/A kg · m–2

Specific volume ν ν = V/m = 1/ρ m3 · kg–1

Momentum p p = mv kg · m · s–1

Angular momentum, action L L = r × p J · s
Moment of inertia I, J I = Σ mi kg · m2

Force F F = d p/d t = m a N
Torque, moment of a force T, (M) T = r × F N · m
Energy E J
Potential energy Ep, V, Φ Ep = ∫ F · ds J
Kinetic energy Ek, T, K Ek = (1/2) mv2 J
Work W, w W = ∫ F · ds J
Hamilton function H H(q,p) = T(q,p) + V(q) J
Lagrange function L J
Pressure p, P p = F/A Pa, N · m–2

Surface tension γ, σ γ = dW/dA N · m–1, J · m–1

Weight G (W, P) G = mg N
Gravitational constant G F = Gm1m2/r2 N · m2 · kg–2

Normal stress σ σ = F/A Pa
Shear stress τ τ  = F/A Pa
Linear strain, relative elongation ε, e ε = ∆l/1 1
Modulus of elasticity, Young’s modulus E E = σ/ε Pa
Shear strain γ γ = ∆x/d 1
Shear modulus G G = τ/γ Pa
Volume strain, bulk strain θ θ = ∆V/V0 1
Bulk modulus, compression modulus K K = V0(dp/dV) Pa
Viscosity, dynamic viscosity η, µ τx,z = η(dvx/dz) Pa · s
Fluidity φ φ = l/η m · kg–1 · s
Kinematic viscosity ν ν = η/ρ m2 · s–1

Friction coefficient µ, (f) Ffrict = µFnorm 1
Power P P = dW/dt W
Sound energy flux P, Pa P = dE/dt W
Acoustic factors
    Reflection factor ρ ρ = Pr/P0 1
    Acoustic absorption factor αa, (α) αa = 1 – ρ 1
    Transmission factor τ τ  = Pu/P0 1
    Dissipation factor δ δ = αa – τ 1

2
23

3
33

ri
2

L q q T q q V q( , ˙) ( , ˙) ( )= −
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Mathematics 19-9
Electricity and Magnetism
Quantity of electricity, electric range Q C
Charge density ρ ρ = Q/V C · m–3

Surface charge density σ σ = Q/A C · m–2

Electric potential V, φ V = dW/dQ V, J · C–1

Electric potential difference U, ∆V, ∆φ U = V2 – V1 V
Electromotive force E E = ∫(F/Q) · ds V
Electric field strength E E = F/Q = –grad V V · m–1

Electric flux ψ ψ = ∫D · dA C
Electric displacement D D = εE C · m–2

Capacitance C C = Q/U F, C · V–1

Permittivity ε D = εE F · m–1

Permittivity of vacuum ε0 ε0 = F · m–1

Relative permittivity εr εr = ε/ε0 1
Dielectric polarization 
(dipole moment per volume)

P P = D – ε0E C · m–2

Electric susceptibility χe χe = ετ – 1 1
Electric dipole moment p, µ P = Qr C · m
Electric current I I = dQ/dt A
Electric current density j, J I = ∫j · dA A · m–2

Magnetic flux density, magnetic 
induction

B F = Qν × B T

Magnetic flux Φ Φ = ∫B · dA Wb
Magnetic field strength H B = µH A · M–1

Permeability µ B = µH N · A–2, H · m–1

Permeability of vacuum µ0 H · m–1

Relative permeability µt µτ = µ/µ0 1
Magnetization 
(magnetic dipole moment per volume)

M M = B/µ0 – H A · m–1

Magnetic susceptibility χ, κ, (χm) χ = µτ – 1 1
Molar magnetic susceptibility χm χm = Vmχ m3 · mol–1

Magnetic dipole moment m, µ Ep = –m · B A · m2, J · T–1

Electrical resistance R R = U/I Ω
Conductance G G = l/R S
Loss angle δ δ = (π/2) + φI – φU l, rad
Reactance X X = (U/I) sin δ Ω
Impedance (complex impedance) Z Z = R + iX Ω
Admittance (complex admittance) Y Y = l/Z S
Susceptance B Y = G + iB S
Resistivity ρ ρ = E/j Ω · m
Conductivity κ, γ, σ κ = l/ρ S · m–1

Self-inductance L E = –L(dI/dt) H
Mutual inductance M, L12 E1 = L12(dI2/dt) H
Magnetic vector potential A B = ∇  × A Wb · m–1

Poynting vector S S = E × H W · m–2

Electromagnetic Radiation
Wavelength λ m
Speed of light
    In vacuum c0 m · s–1

    In a medium c c = c0/n m · s–1

Wavenumber in vacuum  = ν/c0 = l/nλ m–1

Wavenumber (in a medium) σ σ = l/λ m–1

Frequency ν ν = c/λ Hz
Circular frequency, pulsatance ω ω =2πν s–1, rad · s–1

Refractive index n n = c0/c 1
Planck constant h J · s

Name Symbol Definition SI Unit

Classical Mechanics

µ 0
1

0
2− −c

ṽ ṽ
© 1999 by CRC Press LLC



19-10 Section 19
Planck constant/2π  = h/2π J · s
Radiant energy Q, W J
Radiant energy density ρ, w ρ = Q/V J · m–3

Spectral radiant energy density
    In terms of frequency ρν, wν ρν = dρ/dv J · m–3 · Hz–1

    In terms of wavenumber ρν = J · m–2

    In terms of wavelength ρλ, wλ ρλ = dρ/dλ J · m–4

Einstein transition probabilities
    Spontaneous emission Anm dNn/dt = –AnmNn s–2

    Stimulated emission Bnm dNn/dt = –ρν s · kg–1

× BnmNn

    Stimulated absorption Bnm dNn/dt = BnmNn s · kg–1

Radiant power, radiant energy per timeΦ, P Φ = dQ/dt W
Radiant intensity I I  = dΦ/dΩ W · sr–1

Radiant excitance (emitted radiant flux)M M = dΦ/dAsource W · m–2

Irradiance (radiant flux received) E, (I) E = dΦ/dA W · m–2

Emittance ε ε = M/Mbb 1
Stefan-Boltzmann constant σ Mbb = σT4 W · m–2 · K–4

First radiation constant c1 c1 = W · m–2

Second radiation constant c2 c2 = hc0/k K · m
Transmittance, transmission factor τ, T τ = Φtr/Φ0 1
Absorptance, absorption factor α α  = Φabs/Φ0 1
Reflectance, reflection factor ρ ρ = Φrefl/Φ0 1
(Decadic) absorbance A A = lg(l – α i) 1
Napierian absorbance B B = ln(1 – α i) 1
Absorption coefficient
    (Linear) decadic a, K a = A/l m–1

    (Linear) napierian α α  = B/l m–1

    Molar (decadic) ε ε = a/c = A/cl m2 · mol–1

    Molar napierian κ κ  = a/c = B/cl m2 · mol–1

Absorption index k k = α/4π l
Complex refractive index  = n + ik 1
Molar refraction R, Rm m3 · mol–1

Angle of optical rotation α 1, rad

Solid State
Lattice vector R, R0 m
Fundamental translation vectors for the 
crystal lattice

a1; a2; a3, a; 
b; c

R = n1a1 + n2a2 + n3a3 m

(Circular) reciprocal lattice vector G G · R = 2 πm m–1

(Circular) fundamental translation 
vectors for the reciprocal lattice

b1; b2; b3, 
a*; b*; c*

a1 · bk = 2πδik m–1

Lattice plane spacing d m
Bragg angle θ nλ = 2d sin θ 1, rad
Order of reflection n 1
Order parameters
    Short range σ 1
    Long range s 1
Burgers vector b m
Particle position vectort r, Rj m
Equilibrium position vector of an ion R0 m
Displacement vector of an ion u u = R – R0 m
Debye-Waller factor B, D 1
Debye circular wavenumber qD m–1

Debye circular frequency ωD s–1

Grüneisen parameter γ,Γ γ = aV/κCv 1

Name Symbol Definition SI Unit

Classical Mechanics

h h

ρ ˜ ˜v v
w d dvρ / ˜

( ˜ )vnm

ρ ˜ ( ˜ )
v nmv

2 0
2πhc

ṽ
n̂ n̂

R
n

n
Vm= −

+
( )

( )

2

2

1

2
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Mathematics 19-11
Madelung constant α, M 1

Density of states NE NE = dN(E)/dE J–1 · m–3

(Spectral) density of vibrational modesNω, g Nω = dN(ω)/dω s · m–3

Resistivity tensor ρik E = ρ · j Ω · m
Conductivity tensor σik σ = ρ–1 S · m–1

Thermal conductivity tensor λ ik Jq = –λ · grad T W · m–1 · K–1

Residual resistivity ρR Ω · m
Relaxation time τ τ  = l/vF s
Lorenz coefficient L L = λ/σT V2 · K–2

Hall coefficient AH, RH E = ρ·j + RH(B × j) m3 · C–1

Thermoelectric force E V
Peltier coefficient Π V
Thomson coefficient µ, (τ) V·K–1

Work function Φ Φ = E∞ – EF J
Number density, number concentrationn, (p) m–3

Gap energy Eg J
Donor ionization energy Ed J
Acceptor ionization energy Ea J
Fermi energy EF, εF J
Circular wave vector, propagation 
vector

k, q k = 2π/λ m–1

Bloch function uk(r) ψ(r) = uk(r) exp(ik · r) m–3/2

Charge density of electrons ρ ρ(r) = –eψ*(r)ψ(r) C · m–3

Effective mass m* kg
Mobility m µ = νdrift/E m2 · V–1 · s–1

Mobility ratio b b = µn/µp 1
Diffusion coefficient D dN/dt = –DA(dn/dx) m2 · s–1

Diffusion length L L = m
Characteristic (Weiss) temperature φ, φw K
Curie temperature Tc K
Neel temperature TN K

Name Symbol Definition SI Unit

Classical Mechanics

E
N z z e

R
A

coul =
+ −α

πε

2

0 04

Dτ
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Elementary Algebra and Geometry

Fundamental Properties (Real Numbers)

a + b = b + a Commutative law for addition
(a + b) + c = a + (b + c) Associative law for addition

a + 0 = 0 + a Identity law for addition
a + (– a) = (– a) + a = 0 Inverse law for addition

a(bc) = (ab)c Associative law for multiplication

=  = 1, a ≠ 0 Inverse law for multiplication

(a)(1) = (1)(a) = a Identity law for multiplication
ab = ba Commutative law for multiplication

a(b + c) = ab + ac Distributive law
Division by zero is not defined.

Exponents

For integers m and n,

Fractional Exponents

where aI/q is the positive qth root of a if a > 0 and the negative qth root of a if a is negative and q is
odd. Accordingly, the five rules of exponents given above (for integers) are also valid if m and n are
fractions, provided a and b are positive.

Irrational Exponents

If an exponent is irrational (e.g.,  the quantity, such as  is the limit of the sequence a1.4, a1.41,
a1.414,…

Operations with Zero

Logarithms

If x, y, and b are positive b ≠ 1,

a
a

1





1
a

a





a a a

a a a

a a

ab a b

a b a b

n m n m

n m n m

n m nm

m m m

m m m

=

=

( ) =

( ) =

( ) =

+

−

a ap q q p
= ( )1

2 ), a 2 ,

0 0 10m a= =
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 the
Change of Base (a ≠ 1)

Factorials

The factorial of a positive integer n is the product of all the positive integers less than or equal to
integer n and is denoted n!. Thus,

n! = 1 · 2 · 3 · … · n

Factorial 0 is defined: 0! = 1.

Stirling’s Approximation

Binomial Theorem

For positive integer n

Factors and Expansion

log log log

log log log

log log

log log

log

log : log

b b b

b b b

b
p

b

b b

b

b
x

xy x y

x y x y

x p x

x x

b

Note b xb

( ) = +

( ) = −

=

( ) = −

=

= =

1

1

1 0

log log logb a bx x a=

lim !
n

n n
n e n n

→∞
( ) =2π

  
x y x nx y

n n
x y

n n n
x y nxy y

n n n n n n n+( ) = + +
−( ) +

−( ) −( ) + + +− − − −1 2 2 3 3 11

2

1 2

3! !
L

a b a ab b

a b a ab b

a b a a b ab b

a b a a b ab b

a b a b a b

a b a b a ab b

a b

+( ) = + +

−( ) = − +

+( ) = + + +

−( ) = − + −

−( ) = −( ) +( )

−( ) = −( ) + +( )
+

2 2 2

2 2 2

3 3 2 2 3

3 3 2 2 3

2 2

3 3 2 2

3 3

2

2

3 3

3 3

(( ) = +( ) − +( )a b a ab b2 2
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nt

the
Progression

An arithmetic progression is a sequence in which the difference between any term and the preceding
term is a constant (d):

If the last term is denoted l [= a + (n – l)d], then the sum is

A geometric progression is a sequence in which the ratio of any term to the preceding term is a consta
r. Thus, for n terms,

The sum is

Complex Numbers

A complex number is an ordered pair of real numbers (a, b).

The first element (a, b) is called the real part, the second the imaginary part. An alternative notation
for (a, b) is a + bi, where i2 = (– 1, 0), and i = (0, 1) or 0 + li is written for this complex number as a
convenience. With this understanding, i behaves as a number, that is, (2 – 3i)(4 + i) = 8 + 2i – 12i –
3i2 = 11 – 10i. The conjugate of a a + bi is a  – bi,  and the product of a complex number and its
conjugate is a2 + b2. Thus, quotients are computed by multiplying numerator and denominator by 
conjugate of the denominator, as illustrated below:

Polar Form

The complex number x + iy may be represented by a plane vector with components x and y:

(See Figure 19.1.1.). Then, given two complex numbers z1 = τ1(cos θ1 + i sin θ1) and z2 = τ2(cos θ2 + i
sin θ2), the product and quotient are:

  a a d a  d  a n  d, , , ,+ +  + −( )2 1K

s
n

a l= +( )
2

  a ar ar  arn, , , ,2 1K −

S
a ar

r

n

= −
−1

Equality a b c d a c b d

Addition a b c d a c b d

Multiplication a b c d ac bd ad bc

: , ,

: , ,  ,

: , ,  ,

( ) = ( )  = =

( ) + ( ) = + +( )

( )( ) = −  +( )

if and only if  and 

2 3
4 2

4 2 2 3

4 2 4 2
14 8

20
7 4

10
+
+

=
−( ) +( )
−( ) +( )

= + = +i

i

i i

i i

i i

x iy r  i+ =  +( )cos sinθ θ
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Permutations

A permutation is an ordered arrangement (sequence) of all or part of a set of objects. The num
permutations of n objects taken r at a time is

A permutation of positive integers is “even” or “odd” if the total number of inversions is an even in
or an odd integer, respectively. Inversions are counted relative to each integer j in the permutation by
counting the number of integers that follow j and are less than j. These are summed to give the tot
number of inversions. For example, the permutation 4132 has four inversions: three relative to
one relative to 3. This permutation is therefore even.

Combinations

A combination is a selection of one or more objects from among a set of objects regardless o
The number of combinations of n different objects taken r at a time is

FIGURE 19.1.1 Polar form of complex number.

  

Product z z r r i

Quotient z z r r i

Powers z r i r n i n

Roots z r i

n n n

n n

: cos sin

: cos sin

: cos sin cos sin

: cos sin

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1

= +( ) + +( )[ ]
= ( ) −( ) + −( )[ ]
= +( )[ ] = +[ ]

= +( )[ ]

=

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ

rr
k

n
i

k

n

k n

n1 360 360

0 1

cos sin
θ θ+ ⋅ + + ⋅





= −,  1,  2,  ,  K

  

p n r n n n n r

n

n r

,

!
!

( ) = −( ) −( ) − +( )

=
−( )

1 2 1L

C n r
P n r

r

n

r n r
,

,

!
!

! !
( ) = ( ) =

−( )
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s

Algebraic Equations

Quadratic

If ax2 + bx + c = 0, and a ≠ 0, then roots are

Cubic

To solve x2 + bx2 + cx + d = 0, let x = y – b/3. Then the reduced cubic is obtained:

where p = c – (1/3)b2 and q = d – (1/3)bc + (2/27)b3. Solutions of the original cubic are then in term
of the reduced curbic roots y1, y2, y3:

The three roots of the reduced cubic are

where 

When (1/27)p3 + (1/4)q2 is negative, A is complex; in this case A should be expressed in trigonometric
form: A = r(cos θ + i sin θ) where θ is a first or second quadrant angle, as q is negative or positive. The
three roots of the reduced cubic are

Geometry

Figures 19.1.2 to 19.1.12 are a collection of common geometric figures. Area (A), volume (V), and other
measurable features are indicated.

x
b b ac

a
= − ±  −2 4

2

y py q3 0+ + =

x y  b x y  b x y  b1 1  2 2  3 31 3  1 3  1 3= − ( )  = − ( )  = − ( )

y A B

y W A W B

y W A W B

1
1 3  1 3

2
1 3  2 1 3

3
2 1 3  1 3

= ( ) + ( )

= ( ) + ( )

= ( ) + ( )

A q  p q

B q  p q

W
i

W
i

= −  + ( ) +

= −  − ( ) +

= − + = − −

1
2

3 1
4

2

1
2

3 1
4

2

2

1 27

1 27

1 3
2

1 3
2

,

y r

y r

y r

1
1 3

2
1 3

3
1 3

2 3

2
3

120

2
3

240

= ( )  ( )

= ( )  + °





= ( )  + °





cos

cos

cos

θ

θ

θ
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Mathematics 19-17
Table of Derivatives

In the following table, a and n are constants, e is the base of the natural logarithms, and u and v denote
functions of x.

Additional Relations with Derivatives

FIGURE 19.1.2 Rectangle. A = bh.

FIGURE 19.1.3 Parallelogram. A = bh.

FIGURE 19.1.4 Triangle. A = 1/2 bh.

FIGURE 19.1.5 Trapezoid. A = 1/2 (a + b)h.

FIGURE 19.1.6 Circle. A = πR2; circumference = 2πR,
arc length S = R θ (θ in radians).

FIGURE 19.1.7 Sector of circle. Asector = 1/2R2θ; Asegment = 1/2R2 (θ – sin θ).

FIGURE 19.1.8 Regular polygon of n sides. A = (n/4)b2 ctn(π/n);
R = (b/2) csc(π/n).

d

dt
f x dx f t

d

dt
f x dx f t

a

t

t

a

∫ ∫( ) = ( ) ( ) = − ( )
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19-18 Section 19
(Note: Exponent in denominator is 3.)

FIGURE 19.1.9 Right circular cylinder. V = πR2h;
lateral surface area = 2πRh.

FIGURE 19.1.10 Cylinder (or prism) with parallel
bases. V = Ah.

FIGURE 19.1.11 Right circular cone. V = 1/3 πR2h;
lateral surface area = πRl = πR

FIGURE 19.1.12 Sphere V = 4/3 πR3; surface area = 4πR2.

R h2 2+ .

If  then x f y
dy

dx dx dy
= ( ) =,

1

If  and  then chain ruley f u u g x
dy

dx

dy

du

du

dx
= ( ) = ( ) = ⋅ ( ),

If  and  then  and x f t y g t
dy

dx

g t

f t

d y

dx

f t g t g t f t

f t
= ( ) = ( ) = ′( )

′( )
= ′( ) ′′( ) − ′( ) ′′( )

′( )[ ]
, ,

2

2 3
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1. 19.

2. 20.

3. 21.

4. 22.

5. 23.

6. 24.

7. 25.

8. 26.

9. 27.

10. 28.

11. 29.

12. 30.

13. 31.

14. 32.

15. 33.

16. 34.

17. 35.

18. 36.

d

dx
a( ) = 0

d

dx
u

u

du

dx
usin , sin− −=

−
− ≤ ≤( )1

2

1
2

1 1
2

1

1
π π

d

dx
x( ) = 1

d

dx
u

u

du

dx
ucos , cos− −= −

−
≤ ≤( )1

2

11

1
0 π

d

dx
au a

du

dx
( ) = d

dx
u

u

du

dx
tan − =

+
1

2

1

1

d

dx
u v

du

dx

dv

dx
+( ) = + d

dx
u

u

du

dx
ctn − = −

+
1

2

1

1

d

dx
uv u

dv

dx
v

du

dx
( ) = +

d

dx
u

u u

du

dx

u u

sec ,

sec ; sec

−

− −

=
−

− ≤ < − ≤ ≤( )

1

2

1 1
2

1 1
2

1

1

0π π π

d

dx
u v

v
du

dx
u

dv

dx
v

( ) =
−

2

d

dx
u

u u

du

dx

u u

csc ,

csc ; csc

−

− −

= −

−

− < ≤ − < ≤( )

1

2

1 1
2

1 1
2

1

1

0π π π

d

dx
u nu

du

dx
n n( ) = −1 d

dx
u u

du

dx
sinh cosh=

d

dx
e e

du

dx
u u= d

dx
u u

du

dx
cosh sinh=

d

dx
a a a

du

dx
u

e
u= ( )log

d

dx
u u

du

dx
tanh sec= h2

d

dx
u u

du

dxelog = ( )1
d

dx
u u

du

dx
ctnh h= − csc 2

d

dx
u e u

du

dxa alog log= ( )( )1
d

dx
u u u

du

dx
sech sech= − tanh

d

dx
u vu

du

dx
u u

dv

dx
v v v

e= + ( )−1 log
d

dx
u u u

du

dx
csc csch h ctnh= −

d

dx
u u

du

dx
sin cos= d

dx
u

u

du

dx
sin − =

+
1

2

1

1

d

dx
u u

du

dx
cos sin= − d

dx
u

u

du

dx
cosh − =

−
1

2

1

1

d

dx
u u

du

dx
tan sec= 2 d

dx
u

u

du

dx
tanh − =

−
1

2

1

1

d

dx
u u

du

dx
ctn = − csc2 d

dx
u

u

du

dx
ctnh − = −

−
1

2

1

1

d

dx
u u u

du

dx
sec sec tan= d

dx
u

u u

du

dx
sech − = −

−
1

2

1

1

d

dx
u u u

du

dx
csc ctn= − csc

d

dx
u

u u
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dx
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+
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Integrals

Elementary Forms (Add an arbitrary constant to each integral)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

a dx ax∫ =

a f x dx a f x dx⋅ ( ) = ( )∫ ∫
φ

φ
y dx

y

y
dy y

dy

dx
( ) =

( )
′

′ =∫ ∫ , where 

u v dx u dx v dx u v x+( ) = +∫ ∫ ∫ , where  and  are any functions of 

u dv u dv v du uv v du∫ ∫ ∫ ∫= − = −

u
dv

dx
dx uv v

du

dx
dx∫ ∫= −

x dx
x

n
nn

n

∫ =
+

= −
+1

1
1, except 

′( )
( ) = ( ) ( ) = ′( )[ ]∫ f x dx

f x
f x df x f x dxlog ,

dx

x
x∫ = log

′( )
( )

= ( ) ( ) = ′( )[ ]∫ f x dx

f x
f x df x f x dx

2
,

e dx ex x∫ =

e dx e aax ax∫ =

b dx
b

a b
bax

ax

∫ = >( )
log

, 0

log logx dx x x x∫ = −

a a dx a ax xlog ,∫ = >( )0

dx

a x a

x

a2 2
11

+
=∫ −tan

dx

a x

a

x

a

a

a x

a x
a x

2 2

1

2 2

1

1

2

−
=

+
−

>( )














∫

−tan

log ,
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dx

x a

a

x

a

a

x a

x a
x a

2 2

1

2 2

1

1

2

−
=

−

−
+

>( )














∫

−ctnh
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log ,
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Mathematics 19-21
19.

20.

21.

22.

Forms Containing (a + bx)

For forms containing a + bx, but not listed in the table, the substitution u = (a + bx) x may prove helpful.

23.

24.

25.

26.

27.

28.

29.

30.

31.

dx

a x

x

a

x

a
a x

2 2

1

1 2 2

−
=

− >( )















∫

−

−

sin

cos ,

or

dx

x a
x x a

2 2

2 2

±
= + ±



∫ log

dx

x x a a

x

a2 2

11

−
=∫ −sec

dx

x a x a

a a x

x2 2

2 21

±
= − + ±





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∫ log

a bx dx
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n b
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x a bx dx
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2 1
1 22
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.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

The Fourier Transforms

For a piecewise continuous function F(x) over a finite interval 0 ≤ x ≤ π, the finite Fourier cosine
transform of F(x) is

(19.1.1)

If x ranges over the interval 0 ≤ x ≤ L, the substitution x′ = πx/L allows the use of this definition also
The inverse transform is written

(19.1.2)

where (x) = [F(x + 0) + F(x – 0)]/2. We observe that (x) = F(x) at points of continuity. The formula

(19.1.3)

makes the finite Fourier cosine transform useful in certain boundary value problems.

x dx
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

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

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
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+

−( ) +( )
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
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

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=

+( ) − +∫ 2 2

1 1
log

dx

x a bx a

a bx

a bx

x
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+




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
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
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b
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a
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π
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n
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=

∞
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0
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1
π π

πcos

F F

f n F x nx dx
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2 0 1

( ) ( ) = ′′( )
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Analogously, the finite Fourier sine transform of F(x) is

(19.1.4)

and

(19.1.5)

Corresponding to Equation (19.1.6), we have

(19.1.6)

Fourier Transforms

If F(x) is defined for x ≥ 0 and is piecewise continuous over any finite interval, and if

is absolutely convergent, then

(19.1.7)

is the Fourier cosine transform of F(x). Furthermore,

(19.1.8)

If lim x→∞ dnF/dxn = 0, an important property of the Fourier cosine transform,

(19.1.9)

where limx→0 drF/dxr = ar , makes it useful in the solution of many problems.

  
f n F x nx dx ns ( ) = ( ) =( )∫0

π

sin 1,  2,  3,  K

F x f n nx xs

n

( ) = ( ) < <( )
=

∞

∑2
0

1
π

πsin

f n F x nx dx

n f n nF n F

s

s
n

2

0

2 0 1

( ) ( ) = ′′( )

= − ( ) − ( ) − −( ) ( )

∫
π

π

sin

0

∞

∫ ( )F x dx

f F x x dxc α
π

α( ) = ( ) ( )
∞

∫2

0
cos

F x f x dc( ) = ( ) ( )
∞

∫2

0π
α α αcos

f
d F

dx
x dx

a f

c
r

r

r

n
r n

n

n

r
r r

c

2

0

2

2

2 2 1
2

0

1
2

2

2
1 1

( )
∞

− −
=

−

( ) =






( )

= − −( ) + −( ) ( )

∫

∑

α
π

α

π
α α α

cos
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Under the same conditions,

(19.1.10)

defines the Fourier sine transform of F(x), and

(19.1.11)

Corresponding to Equation (19.1.9) we have

(19.1.12)

Similarly, if F(x) is defined for –∞ < x < ∞, and if F(x) dx is absolutely convergent, then

(19.1.13)

is the Fourier transform of F(x), and

(19.1.14)

Also, if

then

(19.1.15)

f F x x dxs α
π

α( ) = ( ) ( )
∞

∫2

0
sin

F x f x ds( ) = ( ) ( )
∞

∫2

0π
α α αsin

f
d F

dx
x dx

a f

s
r

r

r

n n
r n

n

r
r r

s

2

0

2

2

2 1
2 2

1

1 2

2

2
1 1

( )
∞

−
−

=

−

( ) = ( )

= − −( ) + −( ) ( )

∫

∑

α
π

α

π
α α α

sin

∫ −∞
∞

f x F x e dxi x( ) = ( )
−∞

∞

∫1

2π
α

F x f e di x( ) = ( )
−∞

∞
−∫1

2π
α αα

  

lim
x

n

n

d F

dx
n r

→∞
= = −( )0 11,  2,  ,  K

f F x e dx i fr r i x r( )

−∞

∞
( )( ) = ( ) = −( ) ( )∫α

π
α αα1

2
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Finite Sine Transforms

fs(n) F(x)

1. F(x)

2. F(π – x)

3.

4.

5. 1

6.

7.

8.

9. x2

10. x3

11. ecx

12.

13.

14. sin mx

15. cos kx

16. cos mx

17.

18.

19.

  
f n F x nx dx ns ( ) = ( ) =( )∫0

π

sin 1,  2,  K

−( ) ( )+1 1n
sf n

1

n

π
π
− x

−( ) +1 1n

n

x

π

1 1− −( )n

n

2

22n

n
sin

π x x

x x

when 

when 

0 2

2

< <
− < <





π
π π π

−( ) +1 1

3

n

n

x xπ

π

2 2

6

−( )

1 1
3

− −( )n

n

x xπ −( )
2

π2 1

3

1 2 1 1−( ) −
− −( )[ ]−n n

n n

π π−( ) −






1
6

3

2
n

n n

n

n c
en c

2 2 1 1
+

− −( )[ ]π

n

n c2 2+
sinh

sinh

c x

c

π
π
−( )

  

n

n k
k2 2−

≠( )0,  1,  2,  K
sinh

sinh

k x

k

π
π
−( )

  

π
2

0

when 
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1,  2,  

n m

n m

m
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≠










=( )K
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n k
k kn

2 2 1 1
−

− −( )[ ] ≠( )cos π 1,  2,  K
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n m
n m

n m

n m

2 2 1 1

0

−
− −( )[ ] ≠ =
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
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K
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n k
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2 2 2
−( )
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k k2 22 −
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b x

b x−

1 1
1
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b b

2 2

1 2π
arctan

sinb x
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Finite Cosine Transforms

Fourier Sine Transforms

fc(n) F(x)

1. F(x)

2. F(π – x)

3. 1

4.

5. x

6.

7.

8. x3

9.

10.

11. sin kx

12.

13.

14. cos mx

F(x) fs(α)

1.

2.

3.

4.

5.

  
f n F x nx dx nc ( ) = ( ) =( )∫0

π

cos 0,  1,  2,  K

−( ) ( )1 n
cf n

  0 0 when 1,  2,  n fc= ( ) =K; π

2
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0 0
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n
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1 2
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

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1 1
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0 02n
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π
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x 2

2 6

3
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6
1 1

0
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2 4
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n n

cn n
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1 1
2 2

n ce
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π 1

c
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1
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c c
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π
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n k
k kn

2 2 1 1
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−( ) −[ ] ≠( )cos π 0,  1,  2,  K
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−
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+1 1

02 2

n m
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f m m; 1,  2,  K

1

m
mxsin
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2 2n k
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≠( )0,  1,  2,  K −
−( )cos

sin

k x

k k

π
π
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2
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1 0

0

< <( )
>( )





x a

x a
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Fourier Cosine Transforms

6.

7.

* C(y) and S(y) are the Fresnel integrals

F(x) f c(α)

1.

2.

3.

4. e–x

5.

6.

7.

F(x) fs(α)

cos
x 2

2
2

2 2 2 2

2 2 2 2

sin cos

*
α α α α

C S





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
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
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




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


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2 2 2 2
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cos sin
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
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C y
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t dt
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t dt
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( ) =

∫

∫
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sin

1 0
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


x a

x a

 2

π
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α
sin a
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


2 1
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2 4
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Fourier Transforms

F(x) f(α)

1.

2.

3.

4.

5. cos px2

6. sin px2

7.

8.

9.

10.

11.

12.

13.

14.

15.

sin ax

x

π α

α

2
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<

>




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


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
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e p x q
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i e e
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0 0
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2 4
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
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
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
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
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
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
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2 2
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+
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
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
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The following functions appear among the entries of the tables on transforms.

Bessel Functions

Bessel Functions of the First Kind, Jn(x) (Also Called Simply Bessel Functions) 
(Figure 19.1.13)

Domain: [x > 0]
Recurrence relation:

Symmetry: J–n(x) = (–1)nJn(x)

0. J0(20x) 3. J3(20x)
1. J1(20x) 4. J4(20x)
2. J2(20x) 5. J5(20x)

Bessel Functions of the Second Kind, Yn(x) (Also Called Neumann Functions 
or Weber Functions) (Figure 19.1.14)

Domain: [x > 0]
Recurrence relation:

Symmetry: Y–n(x) = (–1)nYn(x)

0. Y0(20x) 3. Y3(20x)
1. Y1(20x) 4. Y4(20x)
2. Y2(20x) 5. Y5(20x)

Function Definition Name

Ei(x) Exponential integral function

Si(x) Sine integral function

Ci(x) Cosine integral function

erf(x) Error function

erfc(x) Complementary function to error function

Ln(x) Laguerre polynomial of degree n

−∞
( )

∫
− − = ∞

∫
−

x ve

v
dv

x x
e v

v dv

;  or sometimes defined as

Ei

0

x v

v
dv∫ sin

∞∫
x v

v
dv

cos
;  or sometimes defined as

negative of this integral

2

π 0

2
x

ve dv∫ −

1
2

− ( ) =
∞

−∫erf x e dv
x

v2

π

  

e

n

d

dx
x e  n

x n

n
n x

!
,−( ) = 0,  1,  K

  
J x

n

x
J x J x  nn n n+ −( ) = ( ) − ( )  =1 1

2
, 0,  1,  2,  K

  
Y x

n

x
Y x Y x  nn n n+ −( ) = ( ) − ( )  =1 1

2
, 0,  1,  2,  K
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Legendre Functions

Associated Legendre Functions of the First Kind,  (Figure 19.1.15)

Domain: [–1 < x < 1]
Recurrence relations:

FIGURE 19.1.13 Bessel functions of the first kind.

FIGURE 19.1.14 Bessel functions of the second kind.

  
Pn

m x( )

  

P x
n xP n m P x

n m
n

P x x  n m xP x n m P x m

n
m n

m
n
m

n
m

n
m

n
m

+
−

+ −
−

( ) =
+( ) − +( ) ( )

− +
=

( ) = −( ) −( ) ( ) − +( ) ( )[ ] =

1
1

1 2 1 2

1

2 1

1

1

,

,

1,  2,  3,  

0,  1,  2,  

K

K
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with

Special case: = Legendre polynomials

1-0.
1-1. 2-1. 0.25
1-2. 2-2. 0.25 3-2. 0.10
1-3. 2-3. 0.25 3-3. 0.10 4-3. 0.025
1-4. 2-4. 0.25 3-4. 0.10 4-4. 0.025

FIGURE 19.1.15 Legendre functions of the first kind.

P P x0
0

1
01= =

Pn
0

P x0
0 ( )

P x1
0 ( ) P x1

1( )
P x2

0 ( ) P x2
1( ) P x2

2 ( )
P x3

0 ( ) P x3
1( ) P x3

2 ( ) P x3
3( )

P x4
0 ( ) P x4

1( ) P x4
2 ( ) P x4

3( )
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Table of Differential Equations

Equation Solution

1. y = ∫ f(x) dx + c

2. y′ + p(x)y = q(x) y = exp[–∫ p(x) dx]{ c + ∫ exp[∫ p(x) dx]q(x)dx}
3. y′ + p(x)y = q(x)yα Set z = y1–α→ z′ + (1 – α)p(x)z = (1 – α)q(x) and use 2

α ≠ 0, α ≠ 1

4. y′ = f(x)g(y)

5.

6.
Set x = X + α,y = Y + β

If a1b2 – a2b1 ≠ 0, set Y = Xu → separable form

If a1b2 – a2b1 = 0, set u = a1x + b1y →

a2x + b2y = k(a,x + a2y)
7. y″ + a2y = 0 y = c1 cos ax + c2 sin ax
8. y″ – a2y = 0 y = c1eax + c2e–ax

9. y″ + ay′ + by = 0

10. y″ + a(x)y′ + b(x)y = 0

11. x2y″ + xy′ + (x2 – a2) y = 0 i. If a is not an integer
a ≥ 0 (Bessel) y = c1Ja(x) + c2J–a(x)

(Bessel functions of first kind)
ii. If a is an integer (say, n)

y = c1Jn(x) + c2Yn(x)
(Yn is Bessel function of second kind)

12. (1 – x2)y″ – 2xy′ + a(a + 1)y = 0 y(x) = c1pa(x) + c1qa(x)
a is real (Legendre) (Legendre functions)

13. y′ + ay2 = bxn Set u′ = ayu → u″ –abxnu = 0 and use 14
(integrable Riccati)
a, b, n real

14. y″ – ax–1y′ + b2xµy = 0 y = xp[c1Jv(kxq) + c2J–v(kxq)
where p = (a + 1)/2, ν = (a + 1)/(µ + 2),
k = 2b/(µ + 2), q = (µ + 2)/2

15. Item 13 shows that the Riccati equation is linearized by raising the order of the equation. 
The Riccati chain, which is linearizable by raising the order, is

u′ = uy,    u″ = u[y1 + y2],    u- = u[y″ + 3yy′ + y3],
u(iv) = u[y- + 4yy″ + 6y2y′ + 3(y′)2 + y4],…

To use this consider the second-order equation y″ + 3yy′ + y3 = f(x). The Riccati transformation 
u′ = yu transforms this equation to the linear for u- = uf(x)!

′ = =y
dy

dx
f x( )

Integrate separable
dy

g y
f x dx

( )
( ) ( )=

dy

dx
f x y= ( / ) Set  y xu u x

du

dx
f u= → + = ( )

1

f u u
du x c

( )
ln

−
= +∫

′ =
+ +
+ +







y f

a x b y c

a x b y c
1 1 1

2 2 2 Choose 
a b c

a b c
Y f
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19.2 Linear Algebra and Matrices

George Cain

Basic Definitions

A Matrix A is a rectangular array of numbers (real or complex)

The size of the matrix is said to be n × m. The 1 × m matrices [ai1 L aim] are called rows of A, and the
n × 1 matrices

are called columns of A. An n × m matrix thus consists of n rows and m columns; aij denotes the element,
or entry, of A in the ith row and jth column. A matrix consisting of just one row is called a row vector,
whereas a matrix of just one column is called a column vector. The elements of a vector are frequent
called components of the vector. When the size of the matrix is clear from the context, we somet
write A = (aij).

A matrix with the same number of rows as columns is a square matrix, and the number of rows and
columns is the order of the matrix. The diagonal of an n × n square matrix A from a11 to ann is called
the main, or principal, diagonal. The word diagonal with no modifier usually means the main diagona
The transpose of a matrix A is the matrix that results from interchanging the rows and columns oA.
It is usually denoted by AT. A matrix A such that A = AT is said to be symmetric. The conjugate transpose
of A is the matrix that results from replacing each element of AT by its complex conjugate, and is usuall
denoted by AH. A matrix such that A = AH is said to be Hermitian.

A square matrix A = (aij) is lower triangular if aij = 0 for j > i and is upper triangular if aij = 0 for
j < i. A matrix that is both upper and lower triangular is a diagonal matrix. The n × n identity matrix
is the n × n diagonal matrix in which each element of the main diagonal is 1. It is traditionally den
I n, or simply I  when the order is clear from the context.
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Algebra of Matrices

The sum and difference of two matrices A and B are defined whenever A and B have the same size.
In that case C = A ± B is defined by C = (cij) = (aij ± bij). The product tA of a scalar t (real or complex
number) and a matrix A is defined by tA = (taij). If A is an n × m matrix and B is an m × p matrix,
the product C = AB is defined to be the n × p matrix C = (cij) given by cij = aikbkj. Note that the
product of an n × m matrix and an m × p matrix is an n × p matrix, and the product is defined onl
when the number of columns of the first factor is the same as the number of rows of the second
Matrix multiplication is, in general, associative: A(BC) = (AB)C. It also distributes over addition (and
subtraction):

It is, however, not in general true that AB = BA, even in case both products are defined. It is clear t
(A + B)T = AT + BT and (A + B)H = AH + BH. It is also true, but not so obvious perhaps, that (AB)T =
BTAT and (AB)H = BHAH.

The n × n identity matrix I  has the property that IA  = AI  = A for every n × n matrix A. If A is square,
and if there is a matrix B such at AB = BA = I , then B is called the inverse of A and is denoted A–1.
This terminology and notation are justified by the fact that a matrix can have at most one inve
matrix having an inverse is said to be invertible, or nonsingular, while a matrix not having an inverse
is said to be noninvertible, or singular. The product of two invertible matrices is invertible and, in fac
(AB)–1 = B–1A–1. The sum of two invertible matrices is, obviously, not necessarily invertible.

Systems of Equations

The system of n linear equations in m unknowns

may be written Ax = b, where A = (aij), x = [x1 x2 L xm]T, and b = [b1 b2 L bn]T. Thus A is an n × m
matrix, and x and b are column vectors of the appropriate sizes.

The matrix A is called the coefficient matrix  of the system. Let us first suppose the coefficient mat
is square; that is, there are an equal number of equations and unknowns. If A is upper triangular, it is
quite easy to find all solutions of the system. The ith equation will contain only the unknowns xi, xi+1,
…, xn, and one simply solves the equations in reverse order: the last equation is solved for xn; the result
is substituted into the (n – 1)st equation, which is then solved for xn–1; these values of xn and xn–1 are
substituted in the (n – 2)th equation, which is solved for xn–2, and so on. This procedure is known a
back substitution.

The strategy for solving an arbitrary system is to find an upper-triangular system equivalent w
and solve this upper-triangular system using back substitution. First suppose the element a11 ≠ 0. We
may rearrange the equations to ensure this, unless, of course the first column of A is all 0s. In this case
proceed to the next step, to be described later. For each i ≥ 2 let mi1 = ai1/a11. Now replace the ith equation
by the result of multiplying the first equation by mi1 and subtracting the new equation from the ith
equation. Thus,

Σ k
m

=1

A B C A B C C B+( ) = + +( ) = +AB AC A Cand

  

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

m m

m m

n n n nm m n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

+ + + + =

+ + + + =

+ + + + =

K

K

M

K

  a x a x a x a x bi i i im m i1 1 2 2 3 3+ + + + =K
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After this is done for all i = 2, 3,…, n, there results the equivalent system

in which all entries in the first column below a11 are 0. (Note that if all entries in the first column we
0 to begin with, then a11 = 0 also.) This procedure is now repeated for the (n – 1) × (n – 1) system

to obtain an equivalent system in which all entries of the coefficient matrix below are 0. Contin
we obtain an upper-triangular system Ux = c equivalent with the original system. This proced
known as Gaussian elimination. The number mij are known as the multipliers.

Essentially the same procedure may be used in case the coefficient matrix is not square
coefficient matrix is not square, we may make it square by appending either rows or columns o
needed. Appending rows of 0s and appending 0s to make b have the appropriate size equiv
appending equations 0 = 0 to the system. Clearly the new system has precisely the same solu
the original system. Appending columns of 0s and adjusting the size of x appropriately yields 
system with additional unknowns, each appearing only with coefficient 0, thus not affecting the sol
of the original system. In either case we may assume the coefficient matrix is square, and ap
Gauss elimination procedure.

Suppose the matrix A is invertible. Then if there were no row interchanges in carrying out the ab
Gauss elimination procedure, we have the LU factorization of the matrix A:

where U is the upper-triangular matrix produced by elimination and L is the lower-triangular m
given by

  
0 1 2 1 12 2 3 1 13 3 1 1 1 1⋅ + +( ) + +( ) + + +( ) = +x a m a x a m a x a m a x b m bi i i i im i m m i iK
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A permutation Pij matrix is an n × n matrix such that Pij A is the matrix that results from exchangin
row i and j of the matrix A. The matrix Pij is the matrix that results from exchanging rows i and j of the
identity matrix. A product P of such matrices Pij is called a permutation matrix. If row interchanges are
required in the Gauss elimination procedure, then we have the factorization

where P is the permutation matrix giving the required row exchanges.

Vector Spaces

The collection of all column vectors with n real components is Euclidean n-space, and is denoted Rn.
The collection of column vectors with n complex components is denoted Cn. We shall use vector space
to mean either Rn or Cn. In discussing the space Rn, the word scalar will mean a real number, and in
discussing the space Cn, it will mean a complex number. A subset S of a vector space is a subspace
such that if u and v are vectors in S, and if c is any scalar, then u + v and cu are in S. We shall sometimes
use the word space to mean a subspace. If B = {v1,v2,…, vk} is a collection of vectors in a vector space
then the set S consisting of all vectors c1v1 + c2v2 + L + cmvm for all scalars c1,c2,…, cm is a subspace,
called the span of B. A collection {v1,v2,…, vm} of vectors c1v1 + c2v2 + L + cmvm is a linear combination
of B. If S is a subspace and B = {v1,v2,…, vm} is a subset of S such that S is the span of B, then B is
said to span S.

A collection {v1,v2,…, vm} of n-vectors is linearly dependent if there exist scalars c1,c2,…, cm, not all
zero, such that c1v1 + c2v2 + L + cmvm = 0. A collection of vectors that is not linearly dependent is s
to be linearly independent. The modifier linearly is frequently omitted, and we speak simply of depende
and independent collections. A linearly independent collection of vectors in a space S that span
basis of S. Every basis of a space S contains the same number of vectors; this number is the dimension
of S. The dimension of the space consisting of only the zero vector is 0. The collection B = {e1, e2,…,
en}, where e1 = [1,0,0,…, 0]T, e2 =[0,1,0,…, 0]T, and so forth (ei has 1 as its ith component and zero for
all other components) is a basis for the spaces Rn and Cn. This is the standard basis for these spaces.
The dimension of these spaces is thus n. In a space S of dimension n, no collection of fewer than n
vectors can span S, and no collection of more than n vectors in S can be independent.

Rank and Nullity

The column space of an n × m matrix A is the subspace of Rn or Cn spanned by the columns of A. The
row space is the subspace of Rm or Cm spanned by the rows or A. Note that for any vector x = [x1 x2, L xm]T, 

so that the column space is the collection of all vectors, Ax, and thus the system Ax = b has a solution
if and only if b is a member of the column space of A.

The dimension of the column space is the rank of A. The row space has the same dimension as 
column space. The set of all solutions of the system Ax = 0 is a subspace called the null space of A,
and the dimension of this null space is the nullity of A. A fundamental result in matrix theory is the fac
that, for an n × m matrix A.

PA LU=

  

Ax =



















+



















+ +



















x

a

a

a

x

a

a

a

x

a

a

an n

m

m

m

nm

1

11

21

1

2

12

22

2

1

2

M M
K

M

rank nullity A A+ = m
© 1999 by CRC Press LLC



Mathematics 19-37

f

is a

basis

led a
The difference of any two solutions of the linear system Ax = b is a member of the null space of A.
Thus this system has at most one solution if and only if the nullity of A is zero. If the system is square
(that is, if A is n × n), then there will be a solution for every right-hand side b if and only if the collection
of columns of A is linearly independent, which is the same as saying the rank of A is n. In this case the
nullity must be zero. Thus, for any b, the square system Ax = b has exactly one solution if and only i
rank A = n. In other words the n × n matrix A is invertible if and only if rank A = n.

Orthogonality and Length

The inner product of two vectors x and y is the scalar xHy. The length, or norm, |x|, of the vector x is
given by |x| =  A unit vector is a vector of norm 1. Two vectors x and y are orthogonal if xHy
= 0. A collection of vectors {v1,v2,…, vm} in a space S is said to be an orthonormal collection if vj

= 0 for i ≠ j and vi = 1. An orthonormal collection is necessarily linearly independent. If S 
subspace (of Rn or Cn) spanned by the orthonormal collection {v1,v2,…, vm}, then the projection of a
vector x onto S is the vector

The projection of x onto S minimizes the function f(y) = |x – y|2 for y ∈  S. In other words the projection
of x onto S is the vector in S that is “closest” to x.

If b is a vector and A is an n × m matrix, then a vector x minimizes |b – Ax|2 if only if it is a solution
of AHAx = AHb. This system of equations is called the system of normal equations for the least-squares
problem of minimizing |b – Ax|2.

If A is an n × m matrix, and rank A = k, then there is a n × k matrix Q whose columns form an
orthonormal basis for the column space of A and a k × m upper-triangular matrix R of rank k such that

This is called the QR factorization of A. It now follows that x minimizes |b – Ax|2 if and only if it is
a solution of the upper-triangular system Rx = QHb.

If {w 1,w2,…, wm} is a basis for a space S, the following procedure produces an orthonormal 
{v 1,v2,…, vm} for S.

Set v1 = w1/|w1|.
Let  = w2 – proj(w2; S1), where S1 is the span of {v1}; set v2 = 
Next, let  = w3 – proj(w3; S2), where S2 is the span of {v1, v2}; set v3 = 

And, so on:  = wi – proj(wi; Si–1), where Si–1 is the span of {v1,v2,…, vi–1}; set vi =  This the
Gram-Schmidt procedure.

If the collection of columns of a square matrix is an orthonormal collection, the matrix is cal
unitary matrix. In case the matrix is a real matrix, it is usually called an orthogonal matrix. A unitary
matrix U is invertible, and U–1 = UH. (In the real case an orthogonal matrix Q is invertible, and Q–1 = QT.)

Determinants

The determinant of a square matrix is defined inductively. First, suppose the determinant det A has been
defined for all square matrices of order < n. Then

where the numbers Cij are cofactors of the matrix A:

x xH .
v i

H

v i
H

  
proj ; H H Hx S x v v x v v x v v( ) = ( ) + ( ) + + ( )1 1 2 2 K m m

A QR=

ṽ2
˜ /||˜ ||.v v2 2

ṽ3
˜ /||˜ ||.v v3 3

ṽ i
˜ /||˜ ||.v vi i

  detA C C C= + + +a a a n n11 11 12 12 1 1K
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where Mij is the (n – 1) × (n – 1) matrix obtained by deleting the ith row and jth column of A. Now
detA is defined to be the only entry of a matrix of order 1. Thus, for a matrix of order 2, we hav

There are many interesting but not obvious properties of determinants. It is true that 

for any 1 ≤ i ≤ n. It is also true that detA = detAT, so that we have

for any 1 ≤ j ≤ n.
If A and B are matrices of the same order, then detAB = (detA)(detB), and the determinant of any

identity matrix is 1. Perhaps the most important property of the determinant is the fact that a ma
invertible if and only if its determinant is not zero.

Eigenvalues and Eigenvectors

If A is a square matrix, and Av = λv for a scalar λ and a nonzero v, then λ is an eigenvalue of A and v
is an eigenvector of A that corresponds to λ. Any nonzero linear combination of eigenvectors corr
sponding to the same eigenvalue λ is also an eigenvector corresponding to λ. The collection of all
eigenvectors corresponding to a given eigenvalue λ is thus a subspace, called an eigenspace of A. A
collection of eigenvectors corresponding to different eigenvalues is necessarily linear-independ
follows that a matrix of order n can have at most n distinct eigenvectors. In fact, the eigenvalues of A
are the roots of the nth degree polynomial equation

called the characteristic equation of A. (Eigenvalues and eigenvectors are frequently called characteristic
values and characteristic vectors.)

If the nth order matrix A has an independent collection of n eigenvectors, then A is said to have a
full set of eigenvectors. In this case there is a set of eigenvectors of A that is a basis for Rn or, in the
complex case, Cn. In case there are n distinct eigenvalues of A, then, of course, A has a full set of
eigenvectors. If there are fewer than n distinct eigenvalues, then A may or may not have a full set o
eigenvectors. If there is a full set of eigenvectors, then

where D is a diagonal matrix with the eigenvalues of A on the diagonal, and S is a matrix whose columns
are the full set of eigenvectors. If A is symmetric, there are n real distinct eigenvalues of A and the
corresponding eigenvectors are orthogonal. There is thus an orthonormal collection of eigenvect
span Rn, and we have

C Mij
i j

ij= −( ) +1 det

det
a b

c d
ad bc





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= −

  detA C C C= + + +a a ai i i i in in1 1 2 2 K

  
detA C C C= + + +a a aj j j j nj nj1 1 2 2 K

det A I−( ) =λ 0

D S AS A SDS= =− −1 1or

A QDQ D Q AQ= =T Tand
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where Q is a real orthogonal matrix and D is diagonal. For the complex case, if A is Hermitian, we have

where U is a unitary matrix and D is a real diagonal matrix. (A Hermitian matrix also has n distinct
real eigenvalues.)
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19.3 Vector Algebra and Calculus

George Cain

Basic Definitions

A vector is a directed line segment, with two vectors being equal if they have the same length a
same direction. More precisely, a vector is an equivalence class of directed line segments, where 
directed segments are equivalent if they have the same length and the same direction. The length of a
vector is the common length of its directed segments, and the angle between vectors is the angle between
any of their segments. The length of a vector u is denoted |u|. There is defined a distinguished vecto
having zero length, which is usually denoted 0. It is frequently useful to visualize a directed segme
as an arrow; we then speak of the nose and the tail of the segment. The sum u + v of two vectors u and
v is defined by taking directed segments from u and v and placing the tail of the segment representi
v at the nose of the segment representing u and defining u + v to be the vector determined by the segme
from the tail of the u representative to the nose of the v representative. It is easy to see that u + v  is
well defined and that u + v = v + u. Subtraction is the inverse operation of addition. Thus the difference
u – v of two vectors is defined to be the vector that when added to v gives u. In other words, if we take
a segment from u and a segment from v and place their tails together, the difference is the segment f
the nose of v to the nose of u. The zero vector behaves as one might expect; u + 0 = u, and u – u = 0.
Addition is associative: u + (v + w) = (u + v) + w.

To distinguish them from vectors, the real numbers are called scalars. The product tu of a scalar t
and a vector u is defined to be the vector having length |t| |u| and direction the same as u if t > 0, the
opposite direction if t < 0, If t = 0, then tu is defined to be the zero vector. Note that t(u + v) = tu + tv,
and (t + s)u = tu + su. From this it follows that u – v = u + (–1)v.

The scalar product u · v of two vectors is |u||v| cos θ, where θ is the angle between u and v. The
scalar product is frequently called the dot product. The scalar product distributes over addition:

and it is clear that (tu) · v = t(u · v). The vector product u × v of two vectors is defined to be the vecto
perpendicular to both u and v and having length u||v| sin θ, where θ is the angle between u and v. The
direction of u × v is the direction a right-hand threaded bolt advances if the vector u is rotated to v. The
vector is frequently called the cross product. The vector product is both associative and distributive, b
not commutative: u × v = –v × u.

A UDU D U AU= =H Hand

u v w u v u w⋅ +( ) = ⋅ + ⋅
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Coordinate Systems

Suppose we have a right-handed Cartesian coordinate system in space. For each vector, u, we associate
a point in space by placing the tail of a representative of u at the origin and associating with u the point
at the nose of the segment. Conversely, associated with each point in space is the vector determ
the directed segment from the origin to that point. There is thus a one-to-one correspondence b
the points in space and all vectors. The origin corresponds to the zero vector. The coordinates
point associated with a vector u are called coordinates of u. One frequently refers to the vector u and
writes u = (x, y, z), which is, strictly speaking, incorrect, because the left side of this equation is a v
and the right side gives the coordinates of a point in space. What is meant is that (x, y, z) are the
coordinates of the point associated with u under the correspondence described. In terms of coordina
for u = (u1, u2, u3) and v = (v1, v2, v3), we have

The coordinate vectors i, j , and k are the unit vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1). A
vector u = (u1, u2, u3) is thus a linear combination of these coordinate vectors: u = u1i + u2j + u3k. A
convenient form for the vector product is the formal determinant

Vector Functions

A vector function F of one variable is a rule that associates a vector F(t) with each real number t in
some set, called the domain of F. The expression F(t) = a means that for any ε > 0, there is a
δ > 0 such that |F(t) –a| < ε whenever 0 < |t – t0| < δ. If F(t) = [x(t), y(t), z(t)] and a = (a1, a2, a3), then

F(t) = a if and only if

A vector function F is continuous  at t0 if F(t) = F(t0). The vector function F is continuous at t0 if
and only if each of the coordinates x(t), y(t), and z(t) is continuous at t0.

The function F is differentiable at t0 if the limit
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exists. This limit is called the derivative of F at t0 and is usually written F′(t0), or (dF/dt)(t0). The vector
function F is differentiable at t0 if and only if each of its coordinate functions is differentiable at t0.
Moreover, (dF/dt)(t0) = [(dx/dt)(t0), (dy/dt)(t0), (dz/dt)(t0)]. The usual rules for derivatives of real value
functions all hold for vector functions. Thus if F and G are vector functions and s is a scalar function, then

If R is a vector function defined for t in some interval, then, as t varies, with the tail of R at the
origin, the nose traces out some object C in space. For nice functions R, the object C is a curve. If R(t)
= [x(t), y(t), z(t)], then the equations

are called parametric equations of C. At points where R is differentiable, the derivative dR/dt is a vector
tangent to the curve. The unit vector T = (dR/dt)/|dR/dt| is called the unit tangent vector. If R is
differentiable and if the length of the arc of curve described by R between R(a) and R(t) is given by
s(t), then

Thus the length L of the arc from R(t0) to R(t1) is

The vector dT/ds = (dT/dt)/(ds/dt) is perpendicular to the unit tangent T, and the number κ = |dT/ds| is
the curvature of C. The unit vector N = (1/κ)(dT/ds) is the principal normal. The vector B = T × N is
the binormal, and dB/ds = –τN. The number τ is the torsion. Note that C is a plane curve if and only
if τ is zero for all t.

A vector function F of two variables is a rule that assigns a vector F(s, t) in some subset of the plane
called the domain of F. If R(s, t) is defined for all (s, t) in some region D of the plane, then as the poin
(s, t) varies over D, with its rail at the origin, the nose of R(s, t) traces out an object in space. For 
nice function R, this object is a surface, S. The partial derivatives (∂R/∂s)(s, t) and (∂R/∂t)(s, t) are
tangent to the surface at R(s, t), and the vector (∂R/∂s) × (∂R/∂t) is thus normal to the surface. Of course,
(∂R/∂t) × (∂R/∂s) = –(∂R/∂s)  × (∂R/∂t) is also normal to the surface and points in the direction oppo
that of (∂R/∂s) × (∂R/∂t). By electing one of these normal, we are choosing an orientation of the surface.
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A surface can be oriented only if it has two sides, and the process of orientation consists of ch
which side is “positive” and which is “negative.”

Gradient, Curl, and Divergence

If f(x, y, z) is a scalar field defined in some region D, the gradient of f is the vector function

If F(x, y, z) = F1(x, y, z)i + F2(x, y, z)j  + F3(x, y, z)k is a vector field defined in some region D, then the
divergence of F is the scalar function

The curl is the vector function

In terms of the vector operator del, ∇  = i(∂/∂x) + j (∂/∂y) + k(∂/∂z), we can write

The Laplacian operator is div (grad) = ∇  · ∇  = ∇ 2 = (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2).

Integration

Suppose C is a curve from the point (x0, y0, z0) to the point (x1, y1, z1) and is described by the vecto
function R(t) for t0 ≤ t ≤ t1. If f f is a scalar function (sometimes called a scalar field) defined on C,
then the integral of f over C is

If F is a vector function (sometimes called a vector field) defined on C, then the integral of F over C is

These integrals are called line integrals.
In case there is a scalar function f such that F = grad f, then the line integral
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The value of the integral thus depends only on the end points of the curve C and not on the curve C
itself. The integral is said to be path-independent. The function f is called a potential function for the
vector field F, and F is said to be a conservative field. A vector field F with domain D is conservative
if and only if the integral of F around every closed curve in D is zero. If the domain D is simply
connected (that is, every closed curve in D can be continuously deformed in D to a point), then F is
conservative if and only if curl F = 0 in D.

Suppose S is a surface described by R(s, t) for (s, t) in a region D of the plane. If f is a scalar function
defined on D, then the integral of f over S is given by

If F is a vector function defined on S, and if an orientation for S is chosen, then the integral F over S,
sometimes called the flux of F through S, is

Integral Thorems

Suppose F is a vector field with a closed domain D bounded by the surface S oriented so that the norma
points out from D. Then the divergence theorem states that

If S is an orientable surface bounded by a closed curve C, the orientation of the closed curve C is
chosen to be consistent with the orientation of the surface S. Then we have Stoke’s theorem:
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19.4 Difference Equations

William F. Ames

Difference equations are equations involving discrete variables. They appear as natural descriptions 
natural phenomena and in the study of discretization methods for differential equations, which
continuous variables.

Let yn = y(nh), where n is an integer and h is a real number. (One can think of measurements ta
at equal intervals, h, 2h, 3h, …, and yn describes these). A typical equation is that describing the fam
Fibonacci sequence — yn+2 –yn+1 –yn = 0. Another example is the equation yn+2 –2zyn+1 + yn = 0, z ∈  C,
which describes the Chebyshev polynomials.

First-Order Equations

The general first-order equation yn+1 = f(yn), y0 = y(0) is easily solved, for as many terms as are need
by iteration. Then y1 = f(y0); y2 = f(y1),…. An example is the logistic equation yn+1 = ayn(1 – yn) = f(yn).
The logistic equation has two fixed (critical or equilibrium) points where yn+1 = yn. They are 0 and 
= (a – 1)/a. This has physical meaning only for a > 1. For 1 < a < 3 the equilibrium  is asymptotically
stable, and for a > 3 there are two points y1 and y2, called a cycle of period two, in which y2 = f(y1) and
y1 = f(y2). This study leads into chaos, which is outside our interest. By iteration, with y0 = 1/2, we have
y1 = (a/2)(1/2) = a/22, y2 = a(a/22)(1 – a/22) = (a2/22)(1 – a/22), ….

With a constant, the equation yn+1 = ayn is solved by making the assumption yn = Aλn and finding λ
so that the equation holds. Thus Aλn+1 = aAλn, and hence λ = 0 or λ = a and A is arbitrary. Discarding
the trivial solution 0 we find yn = Aan+1 is the desired solution. By using a method called the variation
of constants, the equation yn+1 – ayn = gn has the solution yn = y0an +  with y0 arbitrary.

In various applications we find the first-order equation of Riccati type ynyn–1 + ayn + byn–1 + c = 0
where a, b, and c are real constants. This equation can be transformed to a linear second-order eq
by setting yn = zn/zn–1 – a to obtain zn+1 + (b + a)zn + (c – ab)zn–1 = 0, which is solvable as described i
the next section.

Second-Order Equations

The second-order linear equation with constant coefficients yn+2 + ayn+1 + byn = fn is solved by first
solving the homogeneous equation (with right-hand side zero) and adding to that solution any s
of the inhomogeneous equation. The homogeneous equation yn+2 + ayn+1 byn = 0 is solved by assuming
yn = λn, whereupon λn+2 +aλn+1 + bλn = 0 or λ = 0 (rejected) or λ2 + aλ + b = 0. The roots of this
quadratic are λ1 = 1/2  λ2 = –1/2  and the solution of the homogeneou
equation is yn =  As an example consider the Fibonacci equation yn+2 – yn+1 – yn = 0. The
roots of λ2 – λ – 1 = 0 are λ1 = 1/2   λ2 = 1/2  and the solution yn = 
+  is known as the Fibonacci sequence.

Many of the orthogonal polynomials of differential equations and numerical analysis satisfy a se
order difference equation (recurrence relation) involving a discrete variable, say n, and a continuous
variable, say z. One such is the Chebshev equation yn+2 –2zyn+1 + yn = 0 with the initial conditions y0 =
1, y1 = z (first-kind Chebyshev polynomials) and yn–1 = 0, y0 = 1 (second-kind Chebyshev polynomials
They are denoted Tn(z) and Vn(z), respectively. By iteration we find
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and the general solution is yn(z) = c1Tn(z) + c2Vn–1(z),

Linear Equations with Constant Coefficients

The genral kth-order linear equation with constant coefficients is  = gn, p0 = 1. The solution
to the corresponding homogeneous equation (obtained by setting gn = 0) is as follows. (a) yn = 
if the λ i are the distinct roots of the characteristic polynomial p(λ) =  = 0. (b) if ms is the
multiplicity of the root λs, then the functions  yn,s =  where us(n) are polynomials in n whose
degree does not exceed ms – 1, are solutions of the equation. Then the general solution of the homoge
neous equation is yn =  To this solution one adds any particular solution
to obtain the general solution of the general equation.

Example 19.4.1. A model equation for the price pn of a product, at the nth time, is pn + b/a(1 + ρ)pn–1

– (b/a)ρpn–2 + (s0 – d0)/a = 0. The equilibrium price is obtained by setting pn = pn–1 = pn–2 = pe, and one
finds pe = (d0 – s0)/(a + b). The homogeneous equation has the characteristic polynomial λ2 + (b/a)(1 +
ρ)λ – (b/a)ρ = 0. With λ1 and λ2 as the roots the general solution of the full equation is pn =  +

 + pe, since pe is a solution of the full equation. This is one method for finding the solution of th
nonhomogeneous equation.

Generating Function (z Transform)

An elegant way of solving linear difference equations with constant coefficients, among other applica-
tions, is by use of generating functions or, as an alternative, the z transform. The generating function of
a sequence {yn} , n = 0, 1, 2, …, is the function f(x) given by the formal series f(x) = ynxn. The z
transform of the same sequence is z(x) = ynx–n. Clearly, z(x) = f(1/x). A table of some important
sequences is given in Table 19.4.1.

Table 19.4.1 Important Sequences

yn f(x) Convergence Domain

1 (1 – x)–1 |x| < 1
n x(1 – x)–2 |x| < 1
nm xpm(x)(1 – x)–n–1* |x| < 1
kn (1 – kx)–1 |x| < k–1

ean (1 – eax)–1 |x| < e–a

kn cos an |x| < k–1

kn sin an |x| < k–1

xm(1 – x)–m–1 |x| < 1

(1 + x)k |x| < 1

* The term pm(z) is a polynomial of degree m satisfying pm+1(z) = (mz + 1) · 

pm(z)+ z(1 – z)  p1 = 1.
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To solve the linear difference equation  = 0, p0 = 1 we associate with it the two forma
series P = p0 + p1x + L + pkxk and Y = y0 + y1x + y2x2 + L . If p(x) is the characteristic polynomial then
P(x) = xkp(1/x) =  The product of the two series is Q = YP = q0 + q1x + L + qk–1xk–1 + qkxk + L
where qn =  Because pk+1 = pk+2 = L = 0, it is obvious that qk+1 = qk+2 = L = 0 — that is,
Q is a polynomial (formal series with finite number of terms). Then Y = P–1Q =  = q(x)/xkp(1/x),
where p is the characteristic polynomial and q(x) = qixi. The roots of are  where the xi

are the roots of p(x).

Theorem 1. If the roots of p(x) are less than one in absolute value, then Y(x) converges for |x| < 1.
Thorem 2. If p(x) has no roots greater than one in absolute value and those on the unit circ
simple roots, then the coefficients yn of Y are bounded. Now qk = g0, qn+k = gn, and Q(x) = Q1(x) +
xkQ2(x). Hence = [Q1(x) + xkQ2(x)]/

Example 19.4.2. Consider the equation yn+1 + yn = –(n + 1), y0 = 1. Here Q1 =1, Q2 = – (n + 1)xn

= –1/(1 – x)2.

Using the table term by term, we find ynxn = [5/4(–1)n – 1/4 – 1/2 n]xn, so yn = 5/4(–1)n – 1/4 – 1/2 n.
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19.5 Differential Equations

William F. Ames

Any equation involving derivatives is called a differential equation. If there is only one independen
variable the equation is termed a total differential equation or an ordinary differential equation. If there
is more than one independent variable the equation is called a partial differential equation. If the highest-
order derivative is the nth then the equation is said to be nth order. If there is no function of the depende
variable and its derivatives other than the linear one, the equation is said to be linear. Otherwise, it is
nonlinear. Thus (d3y/dx3) + a(dy/dx) + by = 0 is a linear third-order ordinary (total) differential equation
If we replace by with by3, the equation becomes nonlinear. An example of a second-order linear p
differential equation is the famous wave equation (∂2u/∂x2) – a2(∂2u/∂t2) = f(x). There are two independen
variables x and t and a2 > 0 (of course). If we replace f(x) by f(u) (say u3 or sin u) the equation is
nonlinear. Another example of a nonlinear third-order partial differential equation is ut + uux = auxxx.
This chapter uses the common subscript notation to indicate the partial derivatives.

Now we briefly indicate some methods of solution and the solution of some commonly occu
equations.

Ordinary Differential Equations

First-Order Equations

The general first-order equation is f(x, y, y′) = 0. Equation capable of being written in either of the form
y′ = f(x)g(y) or f(x)g(y)y′ + F(x)G(y) = 0 are separable equations. Their solution is obtained by using y′
= dy/dx and writing the equations in differential form as dy/g(y) = f(x)dx or g(y)[dy/G(y)] = –F(x)[dx/f(x)]
and integrating. An example is the famous logistic equation of inhibited growth (dy/dt) = ay(1 – y). The
integral of dy/y(1 – y) = adt is y = 1/[1 +  – 1)e–at] for t ≥ 0 and y(0) = y0 (the initial state called
the initial condition).

Equations may not have unique solutions. An example is y′ = 2y1/2 with the initial condition y(0) =
0. One solution by separation is y = x2. But there are an infinity of others — namely, ya(x) = 0 for –∞
< x ≤ a, and (x – a)2 for a ≤ x < ∞.

If the equation P(x, y)dy + Q(x, y)dy = 0 is reducible to

the equation is called homogenous (nearly homogeneous). The first form reduces to the separable equ
u + x(du/dx) = f(u) with the substitution y/x = u. The nearly homogeneous equation is handled by set
x = X + a, y = Y + β, and choosing α and β so that a1α + b1β + c1 = 0 and a2α + b2β + c2 = 0. If

 ≠ 0 this is always possible; the equation becomes dY/dX = [a1 + b1(Y/X)]/[a2 + b2(Y/X)] and

the substitution Y = Xu gives a separable equation. If  = 0 then a2x + b2y = k(a1x + b1y) and

the equation becomes du/dx = a1 + b1(u + c1)/(ku + c2), with u = a1x + b1y. Lastly, any equation of the
form dy/dx = f(ax + by + c) transforms into the separable equation du/dx = a + bf(u) using the change
of variable u = ax + by + c.

The general first-order linear equation is expressible in the form y′ + f(x)y = g(x). It has the general
solution (a solution with an arbitrary constant c)
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Two noteworthy examples of first-order equations are as follows:

1. An often-occurring nonlinear equation is the Bernoulli equation, y′ + p(x)y = g(x)yα, with α real,
α ≠ 0, α ≠ 1. The transformation z = y1–α converts the equation to the linear first-order equation
z′ + (1 – α)p(x)z = (1 – α)q(x).

2. The famous Riccati equation, y′ = p(x)y2 + q(x)y + r(x), cannot in general be solved by integration.
But some useful transformations are helpful. The substitution y = y1 + u leads to the equation u′
– (2py1 + q)u = pu2, which is a Bernoulli equation for u. The substitution y = y1 + v–1 leads to
the equation v′ + (2py1 + q)v + p = 0, which is a linear first-order equation for v. Once either of
these equations has been solved, the general solution of the Riccati equation is y = y1 + u or y =
y1 + v–1.

Second-Order Equations

The simplest of the second-order equations is y″ + ay′ + by = 0 (a, b real), with the initial conditions
y(x0) = y0, y′(x0) =  or the boundary conditions y(x0) = y0, y(x1) = y1. The general solution of the
equation is given as follows.

1. a2 – 4b > 0, λ1 = 1/2 λ2 = 1/2
y = c1 exp(λ1x) + c2 exp(λ2x)

2. a2 – 4b = 0, λ1 = λ2 = y = (c1 + c2x) exp(λ1x)

3. a2 – 4b < 0, λ1 = 1/2 λ2 = 1/2
i2 = –1
With p = –a/2 and q = 1/2

The initial conditions or boundary conditions are used to evaluate the arbitrary constants c1 and
c2 (or A and B).
Note that a linear problem with specified data may not have a solution. This is especially serious
if numerical methods are employed without serious thought.

For example, consider y″ + y = 0 with the boundary condition y(0) = 1 and y(π) = 1. The general
solution is y = c1 sin x + c2 cos x. The first condition y(0) = 1 gives c2 = 1, and the second condition
requires y(π) = c1 sin π + cos π or “1 = –1,” which is a contradiction.

Example 19.5.1 — The Euler Strut. When a strut of uniform construction is subject to a compressive
load P it exhibits no transverse displacement until P exceeds some critical value P1. When this load is
exceeded, buckling occurs and large deflections are produced as a result of small load changes. Le
rod of length , be placed as shown in Figure 19.5.1.

FIGURE 19.5.1
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From the linear theory of elasticity (Timoshenko), the transverse displacement y(x) satisfies the linear
second-order equation y″ + (Py/EI) = 0, where E is the modulus of elasticity and I is the moment of
inertia of the strut. The boundary conditions are y(0) = 0 and y(a) = 0. With k2 = P/EI the general solution
is y = c1 sin kx + c2 cos kx. The condition y(0) = 0 gives c2 = 0. The second condition gives c1 sin ka =
0. Since c1 = 0 gives the trival solution y = 0 we must have sin ka = 0. This occurs for ka = nπ, n = 0,
1, 2, … (these are called eigenvalues). The first nontrivial solution occurs for n = 1 — that is, k = π/a
— whereupon y1 = c1 sin(π/a), with arbitrary c1. Since P = EIk2 the critical compressive load is P1 = EI
π2/a2. This is the buckling load. The weakness of the linear theory is its failure to model the situation
when buckling occurs.

Example 19.5.2 — Some Solvable Nonlinear Equations. Many physical phenomena are modeled usin
nonlinear second-order equations. Some general cases are given here.

1. y″ = f(y), first integral (y′)2 = 2 ∫ f(y) dy + c.
2. f(x, y′, y″) = 0. Set p = y′ and obtain a first-order equation f(x, p, dp/dx) = 0. Use first-order methods
3. f(y, y′, y″) = 0. Set p = y′ and then y″ = p(dp/dy) so that a first-order equation f [y, p, p(dp/dy) =

0 for p as a function of y is obtained.
4. The Riccati transformation du/dx = yu leads to the Riccati chain of equations, which lineari

by raising the order. Thus,

This method can be generalized to u′ = a(x)yu or u′ = a(x)f(u)y.

Second-Order Inhomogeneous Equations

The general solution of a0(x)y″ + a1(x)y′ + a2(x)y = f(x) is y = yH(x) + yp(x) where yH(x) is the general
solution of the homogeneous equation (with the right-hand side zero) and yp is the particular integral of
the equation. Construction of particular integrals can sometimes be done by the method of undetermined
coefficients. See Table 19.5.1. This applies only to the linear constant coefficient case in which the
function f(x) is a linear combination of a polynomial, exponentials, sines and cosines, and some produ
of these functions. This method has as its base the observation that repeated differentiation of such
functions gives rise to similar functions.

Example 19.5.3. Consider the equation y″ + 3y′ + 2y = sin 2x. The characteristic equation of the
homogeneous equation λ2 + 3λ + 2 = 0 has the two roots λ1 = –1 and λ2 = –2. Consequently, yH = c1e–x

+ c2e–2x. Since sin 2x is not linearly dependent on the exponentials and since sin 2x repeats after two

Equation in y Equation in u

1. y′ + y2 = f(x) u″ = f(x)u
2. y″ + 3yy′ + y3 = f(x) u- = f(x)u
3. y- + 6y2y′ + 3(y′)2 + 4yy″ = f(x) u(iv) = f(x)u

Table 19.5.1 Method of Undetermined Coefficients — Equation L(y) = f(x) (Constant Coefficients)

Terms in f(x) Terms To Be Included in yp(x)

1. Polynomial of degree n (i) If L(y) contains y, try yp = a0xn + a1xn–1 + L + an,
(ii ) If L(y) does not contain y and lowest-order derivative is y(r), try yp = a0xn+r 

+ L + anxr.
2. sin qx, cos qx (i) sin qx and/or cos qx are not in yH; yp = B sin qx + C cos qx.

(ii ) yH contains terms of form xr sin qx and/or xr cos qx for r = 0, 1, …, m; 
include in yp terms of the form a0xm+1 sin qx + a1xm+1 cos qx.

3. eax (i) yH does not contain eax; include Aeax in yp.
(ii ) yH contains eax, xeax, …, xneax; include in yp terms of the form Axn+1eax,

4. epx sin qx, epx cos qx (i) yH does not contain these terms; in yp include Aepx sin qx + Bepx cos qx.
(ii ) yH contains xr epx sin qx and/or xr epx cos qx; r = 0,1, …, m include in yp.

Axm+1epx sin qx + Bxm+1 epx cos qx.
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differentiations, we assume a particular solution with undetermined coefficients of the form yp(x) = B
sin 2x + C cos 2x. Substituting into the original equation gives –(2B + 6C) sin 2x + (6B – 2C) cos 2x
= sin 2x. Consequently, –(2B + 6C) = 1 and 6B – 2C = 0 to satisfy the equation. These two equatio
in two unknowns have the solution B = –1/20 and C = –3/20. Hence yp = –1/20 (sin 2x + 3 cos 2x) and
y = c1e–x + c2e–2x – 1/20 (sin 2x + 3 cos 2x).

A general method for finding yp(x) called variation of parameters uses as its starting point yH(x). This
method applies to all linear differential equations irrespective of whether they have constant coeffici
But it assumes yH(x) is known. We illustrate the idea for a(x)y″ + b(x)y′ + c(x)y = f(x). If the solution
of the homogeneous equation is yH(x) = c1φ1(x) + c2φ2(x), then vary the parameters c1 and c2 to seek
yp(x) as yp(x) = u1(x)φ1(x) + u2(x)φ2(x). Then = u1  + u2  + φ1 + φ2 and choose φ1 +

φ2 = 0. Calculating and setting in the original equation gives a(x)  + a(x)  = f. Solving
the last two equations for  and  gives  = –φ2f/wa, = φ1f/wa, where w = φ1  – φ2 ≠ 0.
Integrating the general solution gives y = c1φ1(x) + c2φ2(x) – {∫[φ2f(x)]/wa} φ1(x) + [∫(φ1f/wa)dx]φ2(x).

Example 19.5.4. Consider the equations y″ – 4y = sin x/(1 + x2) and yH = c1e–2x + c2e–2x. With φ1 = e2x,
and φ2 = e–2x, w = 4, so the general solution is

The method of variation of parameters can be generalized as described in the references.
Higher-order systems of linear equations with constant coefficients are treated in a similar m

Details can be found in the references.

Series Solution

The solution of differential equations can only be obtained in closed form in special cases. For all 
series or approximate or numerical solutions are necessary. In the simplest case, for an initia
problem, the solution can be developed as a Taylor series expansion about the point where th
data are specified. The method fails in the singular case — that is, a point where the coefficient of th
highest-order derivative is zero. The general method of approach is called the Frobenius method.

To understand the nonsingular case consider the equation y″ + xy = x2 with y(2) = 1 and y′(2) = 2 (an
initial value problem). We seek a series solution of the form y(x) = a0 + a1(x – 2) + a2(x – 2)2 + L. To
proceed, set 1 = y(2) = a0, which evaluates a0. Next y′(x) = a1 + 2a2(x – 2) + L, so 2 = y′(2) = a1 or a1

= 2. Next y″(x) = 2a2 + 6a3(x – 2) + L. and from the equation, y″ = x2 – xy, so y″(2) = 4 – 2y(2) = 4
– 2 = 2. Hence 2 = 2a2 or a2 = 1. Thus, to third-order y(x) = 1 + 2(x – 2) + (x – 2)2 + R2(x), where the
remainder R2(x) [(x – 2)3/3]y-(ξ), where 2 < ξ < x can be bounded for each x by finding the maximum
of y-(x) = 2x – y – xy′. The third term of the series follows by evaluating y-(2) = 4 – 1 – 2 · 2 = –1,
so 6a3 = –1 or a3 = –1/6.

By now the nonsingular process should be familiar. The algorithm for constructing a series so
about a nonsingular (ordinary) point x0 of the equation P(x)y″ + Q(x)y′ + R(x)y = f(x) (note that P(x0)
≠ 0) is as follows:

1. Substitute into the differential equation the expressions

2. Expand P(x), Q(x), R(x), and f(x) about the point x0 in a power series in (x – x0) and substitute
these series into the equation.

3. Gather all terms involving the same power of (x – x0) to arrive at an identity of the form 
An(x – x0)n ≡ 0.

′yP ′φ1 ′φ2 ′u1 ′u2 ′u1

′u2 ′′yP ′ ′u1 1φ ′ ′u2 2φ
′u1 ′u2 ′u1 ′u2 ′φ2 ′φ1

y c e c e
e e x

x
dx

e e x

x
dxx x

x x x x

= + −
+

+
+

−
− −
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2
2

2 2
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2 2
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4. Equate to zero each coefficient An of step 3.
5. Use the expressions of step 4 to determine a2, a3, … in terms of a0, a1 (we need two arbitrary

constants) to arrive at the general solution.
6. With the given initial conditions, determine a0 and a1.

If the equation has a regular singular point — that is, a point x0 at which P(x) vanishes and a series
expansion is sought about that point — a solution is sought of the form y(x) = (x – x0)r an(x – x0)n,
a0 ≠ 0 and the index r and coefficients an must be determined from the equation by an algorithm analog
to that already described. The description of this Frobenius method is left for the references.

Partial Differential Equations

The study of partial differential equations is of continuing interest in applications. It is a vast su
so the focus in this chapter will be on the most commonly occurring equations in the engin
literature — the second-order equations in two variables. Most of these are of the three basic
elliptic, hyperbolic, and parabolic.

Elliptic equations are often called potential equations since they occur in potential problems wher
the potential may be temperature, voltage, and so forth. They also give rise to the steady solu
parabolic equations. They require boundary conditions for the complete determination of their so

Hyperbolic equations are often called wave equations since they arise in the propagation of wave
For the development of their solutions, initial and boundary conditions are required. In principle
are solvable by the method of characteristics.

Parabolic equations are usually called diffusion equations because they occur in the transfer (diffusion
of heat and chemicals. These equations require initial conditions (for example, the initial tempe
and boundary conditions for the determination of their solutions.

Partial differential equations (PDEs) of the second order in two independent variables (x, y) are of
the form a(x, y)uxx + b(x, y)uxy + c(x, y)uyy = E(x, y, u, ux, uy). If E = E(x, y) the equation is linear; if E
depends also on u, ux, and uy, it is said to be quasilinear, and if E depends only on x, y, and u, it is
semilinear. Such equations are classified as follows: If b2 – 4ac is less than, equal to, or greater tha
zero at some point (x, y), then the equation is elliptic, parabolic, or hyperbolic, respectively, at that p
A PDE of this form can be transformed into canonical (standard) forms by use of new variables.
standard forms are most useful in analysis and numerical computations.
For hyperbolic equations the standard form is uξη = φ(u, uη, uξ, η, ξ), where ξx/ξy = 
and ηx/ηy = . The right-hand sides of these equations determine the so-c
characteristics (dy/dx)|+ =  (dy/dx)|– = 

Example 19.5.5. Consider the equation y2uxx – x2uyy = 0, ξx/ξy = –x/y, ηx/ηy = x/y, so ξ = y2 – x2 and η
= y2 + x2. In these new variables the equation becomes uξη = (ξuη – ηuξ)/2(ξ2 – η2).

For parabolic equations the standard form is uξξ = φ(u, uη, uξ, η, ξ) or uηη = φ(u, uη, uξ, ξ, η), depending
upon how the variables are defined. In this case ξx/ξy = –b/2a if a ≠ 0, and ξx/ξy = –b/2c if c ≠ 0. Only
ξ must be determined (there is only one characteristic) and η can be chosen as any function that 
linearly independent of ξ.

Example 19.5.6. Consider the equation y2uxx – 2xyuxy + x2uyy + uy = 0. Clearly, b2 – 4ac = 0. Neither
a nor c is zero so either path can be chosen. With ξx/ξy = –b/2a = x/y, there results ξ = x2 + y2. With η
= x, the equation becomes uηη = [2(ξ + η)uξ + uη]/(ξ – η2).

For elliptic equations the standard form is uαα + uββ = φ(u, uα, uβ, α, β), where ξ and η are determined
by solving the ξ and η equations of the hyperbolic system (they are complex) and taking α = (η + ξ)/2,
β = (η – ξ)/2i(i2 = –1). Since ξ and η are complex conjugates, both α and β are real.

Example 19.5.7. Consider the equation y2uxx + x2uyy = 0. Clearly, b2 – 4ac < 0, so the equation is
elliptic. Then ξx/ξy = –ix/y, ηx/ηy = ix/y, so α = (η + ξ)/2 = y2 and β = (η – ξ)/2i = x2. The standard form
is uαα + uββ = –(uα/2α + uβ/2β).

Σn=
∞

0

( ) / ,− + −b b ac a2 4 2
( ) / .− − −b b ac a2 4 2

( ) / ,− + −b b ac a2 4 2 ( ) / .− − −b b ac a2 4 2
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Methods of Solution

Separation of Variables.  Perhaps the most elementary method for solving linear PDEs with hom
neous boundary conditions is the method of separation of variables. To illustrate, consider ut – uxx = 0,
u(x, 0) = f(x) (the initial condition) and u(0, t) = u(1, t) = 0 for t > 0 (the boundary conditions). A solution
is assumed in “separated form” u(x, t) = X(x)T(t). Upon substituting into the equation we find  =
X″/X (where  = dT/dt and X″ = d2X/dx2). Since T = T(t) and X = X(x), the ratio must be constant, an
for finiteness in t the constant must be negative, say –λ2. The solutions of the separated equations X″ +
λ2X = 0 with the boundary conditions X(0) = 0, X(1) = 0, and  = –λ2T are X = A sin λx + B cos λx
and T =  where A, B, and C are arbitrary constants. To satisfy the boundary condition X(0) = 0,
B = 0. An infinite number of values of λ (eigenvalues), say λn = nπ(n = 1, 2, 3, …), permit all the
eigenfunctions Xn = bn sin λnx to satisfy the other boundary condition X(1) = 0. The solution of the

Figure 19.5.2 Figure 19.5.3

Figure 19.5.4 Figure 19.5.5

FIGURE 19.5.2 to 19.5.5 The mathematical equations used to generate these three-dimensional figures are
a thousand words. The figures shown illustrate some of the nonlinear ideas of engineering, applied physics,
chemistry. Figure 19.5.2 represents a breather soliton surface for the sine-Gordon equation wuv = sin w generated
by a Backlund transformation. A single-soliton surface for the sine-Gordon equation wuv = sin w is illustrated in
Figure 19.5.3. Figure 19.5.4 represents a single-soliton surface for the Tzitzecia-Dodd-Bullough equation associate
with an integrable anisentropic gas dynamics system. Figure 19.5.5 represents a single-soliton Bianchi surface.
The solutions to the equations were developed by W. K. Schief and C. Rogers at the Center for Dynamical Syste
and Nonlinear Studies at the Georgia Institute of Technology and the University of New South Wales in Sydney,
Australia. All of these three-dimensional projections were generated using the MAPLE software package. (F
courtesy of Schief and Rogers).

˙ /T T
Ṫ

Ṫ
Ce t−λ2

,
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equation and boundary conditions (not the initial condition) is, by superposition, u(x, t) = 
· sin nπx (a Fourier sine series), where the bn are arbitrary. These values are obtained from the ini
condition using the orthogonality properties of the trigonometric function (e.g., sin mx sin n x d x
is 0 for m ≠ n and is π for m = n ≠ 0) to be bn = 2 f(r) sin n π r d r. Then the solution of the problem
is u(x, t) = [2  f(r) sin n π r d r] sin n π x, which is a Fourier sine series.

If f(x) is a piecewise smooth or a piecewise continuous function defined for a ≤ x ≤ b, then its Fourier
series within a ≤ x ≤ b as its fundamental interval (it is extended periodically ouside that interval) 

where

The Fourier sine series has an ≡ 0, and the Fourier cosine series has bn ≡ 0. The symbol ~ means tha
the series converges to f(x) at points of continuity, and at the (allowable) points of finite discontinu
the series converges to the average value of the discontinuous values.

Caution: This method only applies to linear equations with homogeneous boundary conditions. Li
equations with variable coefficients use other orthogonal functions, such as the Besel functions, L
functions, Chebyshev functions, and so forth.

Some inhomogeneous boundary value problems can be transformed into homogeneous ones. 
the problem ut – uxx = 0, 0 ≤ x ≤ 1, 0 ≤ t < ∞ with initial condition u(x, 0) = f(x), and boundary conditions
u(0, t) = g(t), u(1, t) = h(t). To homogenize the boundary conditions set u(x, t) = w(x, t) + x[h(t) – g(t)]
+ g(t) and then solve wt – wx =  –  with the initial condition w(x, 0) = f(x) – x[h(0) –
g(0)] + g(0) and w(0, t) = w(1, t) = 0.

Operational Methods.A number of integral transforms are useful for solving a variety of linear pr
lems. To apply the Laplace transform to the problem ut – uxx = δ(x) δ(t), – ∞ < x < ∞, 0 ≤ t with the
initial condition u(x, 0–) = 0, where δ is the Dirac delta function, we multiply by e–st and integrate with
respect to t from 0 to ∞. With the Laplace transform of u(x, t) denoted by U(x, s) — that is, U(x, s) =

e–st u(x, t) dt — we have sU – Uxx = δ(x), which has the solution

Clearly, B(s) = C(s) = 0 for bounded solutions as |x| → ∞. Then, from the boundary condition, U(0+, s)
– U(0–, s) = 0 and integration of sU – Uxx = δ(x) from 0– to 0+ gives Ux(0+, s) – U(0–, s) = –1, so A =
D = 1/2  Hence, U(x, s) = (1/2  and the inverse is u(x, t) = (1/2 πi) estU(x, s) ds, where
Γ is a Bromwich path, a vertical line taken to the right of all singularities of U on the sphere.

Similarity (Invariance).This very useful approach is related to dimensional analysis; both have 
foundations in group theory. The three important transformations that play a basic role in New
mechanics are translation, scaling, and rotations. Using two independent variables x and t and one
dependent variable u = u(x, t), the translation group is  = x + αa,  = t + βa,  = u + γa; the scaling
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group is  = aαx,  = aβt, and  = aγu; the rotation group is  = x cos a + t sin a,  = t cos a – x
sin a,  = u, with a nonnegative real number a. Important in which follows are the invariants of these
groups. For the translation group there are two η = x – λt, λ = α/β, f(η) = u – εt, ε = γ/β or f(η) = u –
θx, θ = γ/α; for the scaling group the invariants are η = x/tα/β (or t/xβ/α) and f(η) = u/tγ/β (or u/xγ/α); for
the rotation group the invariants are η = x2 + t2 and u = f(η) = f(x2 + t2).

If a PDE and its data (initial and boundary conditions) are left invariant by a transformation g
then similar (invariant) solutions are sought using the invariants. For example, if an equation 
invariant under scaling, then solutions are sought of the form u(x, t) = tγ/β f(η), η = xt–α/β or u(x, t) = xγ/α

f(tx–β/α); invariance under translation gives solutions of the form u(x, t) = f(x – λt); and invariance under
rotation gives rise to solutions of the form u(x, t) = f(x2 + t2).

Examples of invariance include the following:

1. The equation uxx + uyy = 0 is invariant under rotation, so we search for solutions of the form u =
f(x2 + y2). Substitution gives the ODE f ′ + ηf ″ = 0 or (ηf ′)′ = 0. The solution is u(x, t) = c ln η
= c ln(x2 + t2), which is the (so-called) fundamental solution of Laplace’s equation.

2. The nonlinear diffusion equation ut = (unux)x (n > 0), 0 ≤ x, 0 ≤ t, u(0, t) = ctn is invariant under
scaling with the similar form u(x, t) = tn f(η), η = xt–(n+1)/2. Substituting into the PDE gives the
equation (fnf′)′ + ((n + 1)/2)ηf′ – nf = 0, with f(0) = c and f(∞) = 0. Note that the equation is an ODE

3. The wave equation uxx – utt = 0 is invariant under translation. Hence, solutions exist of the fo
u = f(x – λt). Substitution gives f ″(l – λ2) = 0. Hence, λ = ±1 or f is linear. Rejecting the trivial
linear solution we see that u = f(x – t) + g(x + t), which is the general (d’Alembert) solution o
the wave equation; the quantities x – t = α, x + t = β are the characteristics of the next section

The construction of all transformations that leave a PDE invariant is a solved problem left fo
references.

The study of “solitons” (solitary traveling waves with special properties) has benefited from symm
considerations. For example, the nonlinear third-order (Korteweg-de Vries) equation ut + uux – auxxx =
0 is invariant under translation. Solutions are sought of the form u = f(x – λt), and f satisfies the ODE,
in η = x – λt, – λf ′ + ff ′ – af- = 0.

Characteristics.Using the characteristics the solution of the hyperbolic problem utt – uxx = p(x, t), – ∞
< x < ∞, 0 ≤ t, u(x, 0) = f(x), ut(x, 0) = h(x) is

The solution of utt – uxx = 0, 0 ≤ x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, ut(x, 0) = h(x), u(0, t) = 0, t > 0 is u(x,
t) = 1/2 h(ξ) dξ.

The solution of utt – uxx = 0, 0 ≤ x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = g(t), t > 0 is

From time to time, lower-order derivatives appear in the PDE in use. To remove these fro
equation utt – uxx + aux +but + cu = 0, where a, b, and c are constants, set ξ = x + t, µ = t – x, whereupon
u(x, t) = u[(ξ – µ)/2, (ξ + µ)/2] = U(ξ, µ), where Uξµ + [(b + a)/4] Uξ + [(b – a)/4] Uµ + (c/4)U = 0.
The transformation U(ξ, µ) = W(ξ, µ) exp[–(b – a)ξ/4 – (b + a)µ/4] reduces to satisfying Wξµ + λW =
0, where λ = (a2 – b2 + 4c)/16. If λ ≠ 0, we lose the simple d’Alembert solution. But the equation 
W is still easier to handle.
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In linear problems discontinuities propagate along characteristics. In nonlinear problems the si
is usually different. The characteristics are often used as new coordinates in the numerical me
characteristics.

Green’s Function.Consider the diffusion problem ut – uxx = δ(t)δ(x – ξ), 0 ≤ x < ∞, ξ > 0, u(0, t) = 0,
u(x, 0) = 0 [u(∞, t) = u(∞, 0) = 0], a problem that results from a unit source somewhere in the do
subject to a homogeneous (zero) boundary condition. The solution is called a Green’s function of the
first kind. For this problem there is G1(x, ξ, t) = F(x – ξ, t) – F(x + ξ, t), where F(x, t) = is
the fundamental (invariant ) solution. More generally, the solution of ut – uxx = δ(x – ξ) δ(t – τ), ξ > 0,
τ > 0, with the same conditions as before, is the Green’s function of the first kind.

for the semi-infinite interval.
The solution of ut – uxx = p(x, t), 0 ≤ x < ∞, 0 ≤ t < ∞, with u(x, 0) = 0, u(0, t) = 0, t > 0 is u(x, t) =
dτ p(ξ, τ)G1(x, ξ, t – τ)] d ξ, which is a superposition. Note that the Green’s function and 

desired solution must both satisfy a zero boundary condition at the origin for this solution to make
The solution of ut – uxx = 0, 0 ≤ x < ∞, 0 ≤ t < ∞, u(x, 0) = f(x), u(0, t) = 0, t > 0 is u(x, t) = 

f(ξ)G1(x, ξ, t) d ξ.
The solution of ut – uxx = 0, 0 ≤ x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, u(0, t) = g(t), t > 0  (nonhomogeneous)

is obtained by transforming to a new problem that has a homogeneous boundary condition. Thu
w(x, t) = u(x, t) – g(t) the equation for w becomes wt – wxx =  – g(0) δ(t) and w(x, 0) = 0, w(0,
t) = 0. Using G1 above, we finally obtain u(x, t) =

The Green’s function approach can also be employed for elliptic and hyperbolic problems.

Equations in Other Spatial Variables.The sperically symmetric wave equation urr + 2ur/r – utt = 0 has
the general solution u(τ, t) = [f(t – r) + g(t + r)]/r.

The Poisson-Euler-Darboux equation, arising in gas dynamics,

where N is a positive integer ≥ 1, has the general solution

Here, k is an arbitrary constant and f and g are arbitrary functions whose form is determined from t
problem initial and boundary conditions.

Conversion to Other Orthogonal Coordinate Systems.Let (x1, x2, x3) be rectangular (Cartesian) coordi
nates and (u1, u2, u3) be any orthogonal coordinate system related to the rectangular coordinates bxi =
xi(u1, u2, u3), i = 1, 2, 3. With (ds)2 = (dx1)2 + (dx2)2 + (dx3)2 = g11(du1)2 + g22(du2)2 + g33(du3)2, where
gii = (∂x1/∂ui)2 + (∂x2/∂ui)2 + (∂x3/∂ui)2. In terms of these “metric” coefficients the basic operations
applied mathematics are expressible. Thus (with g = g11g22g33)
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are unit vectors in direction i);

[here  = (E1, E2, E3)];

Table 19.5.2 shows some coordinate systems.
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Table 19.5.2 Some Coordinate Systems

Coordinate System Metric Coefficients

Circular Cylindrical

x = r cos θ u1 = r g11 = 1
y = r sin θ u2 = θ g22 = r2

z = z u3 = z g33 = 1

Spherical

x = r sin ψ cos θ u1 = r g11 = 1
y = r sin ψ sin θ u2 = ψ g22 = r2

z = r cos ψ u3 = θ g33 = r2 sin2 ψ

Parabolic Coordinates

x = µ ν cos θ u1 = µ g11 = µ2 + ν2

y = µ ν sin θ u2 = ν g22 = µ2 + ν2

z = 1/2 (µ2 – ν2) u3 = θ g33 = µ2ν2

Other metric coefficients and so forth can be found in Moon and 
Spencer [1961].
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19.6 Integral Equations

William F. Ames

Classification and Notation

Any equation in which the unknown function u(x) appears under the integral sign is called an integral
equation. If f(x), K(x, t), a, and b are known then the integral equation for u, K(x, t), u(t) dt = f(x) is
called a linear integral equation of the first kind of Fredholm type. K(x, t) is called the kernel function
of the equation. If b is replaced by x (the independent variable) the equation is an equation of Volterra
type of the first kind.

An equation of the form u(x) = f(x) + λ K(x, t)u(t) dt is said to be a linear integral equation o
Fredholm type of the second kind. If b is replaced by x it is of Volterra type. If f(x) is not present the
equation is homogeneous.

The equation φ(x) u(x) = f(x) + λ K(x, t)u(t) dt is the third kind equation of Fredholm or Volterra
type. If the unknown function u appears in the equation in any way other than to the first power 
the integral equation is said to be nonlinear. Thus, u(x) = f(x) + K(x, t) sin u(t) dt is nonlinear. An
integral equation is said to be singular when either or both of the limits of integration are infinite or 
K(x, t) becomes infinite at one or more points of the integration interval.
Example 19.6.1. Consider the singular equations u(x) = x + sin (x t) u(t) dt and f(x) = [u(t)/(x –
t)2] dt.

Relation to Differential Equations

The Leibnitz rule (d/dx) F(x, t) dt (∂F/∂x) dt + F[x, b(x)](db/dx) – F[x, a(x)] × (da/dx) is useful
for differentiation of an integral involving a parameter (x in this case). With this, one can establish th
relation

This result will be used to establish the relation of the second-order initial value problem to a Vo
integral equation.

The second-order differential equation y″(x) + A(x)y′(x) + B(x)y = f(x), y(a) = y0, y′(a) = is equivalent
to the integral equations

which is of the type (x)y = K(x, t)y(t) dt + F(x) where K(x, t) = (t – x)[B(t) – A′(t)] – A(t) and F(x)
includes the rest of the terms. Thus, this initial value problem is equivalent to a Volterra integral eq
of the second kind.

Example 19.6.2. Consider the equation y″ + x2y′ + xy = x, y(0) = 1, y′(0) = 0. Here A(x) = x2, B(x) =
x, f(x) = x, a = 0, y0 = 1, = 0. The integral equation is y(x) = t(x – 2t)y(t) dt + (x3/6) + 1.

The expression for In(x) can also be useful in converting boundary value problems to integral equa
For example, the problem y″(x) + λy = 0, y(0) = 0, y(a) = 0 is equivalent to the Fredholm equation y(x)
= λ K(x, t)y(t) dt, where K(x, t) = (t/a)(a – x) when t < x and K(x, t) = (x/a)(a – t) when t > x.

In both cases the differential equation can be recovered from the integral equation by using the L
rule.
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Nonlinear differential equations can also be transformed into integral equations. In fact this 
method used to establish properties of the equation and to develop approximate and numerical so
For example, the “forced pendulum” equation y″(x) + a2 sin y(x) = f(x), y(0) = y(1) = 0 transforms into
the nonlinear Fredholm equation.

with K(x, t) = x(1 – t) for 0 < x < t and K(x, t) = t(1 – x) for t < x < 1.

Methods of Solution

Only the simplest integral equations can be solved exactly. Usually approximate or numerical m
are employed. The advantage here is that integration is a “smoothing operation,” whereas differe
is a “roughening operation.” A few exact and approximate methods are given in the following sec
The numerical methods are found under 19.12.

Convolution Equations

The special convolution equation y(x) = f(x) + λ K(x – t)y(t) dt is a special case of the Volterra equatio
of the second kind. K(x – t) is said to be a convolution kernel. The integral part is the convolution integra
discussed under 19.8. The solution can be accomplished by transforming with the Laplace tran
L[y(x)] = L[f(x)] + λL[y(x)]L[K(x)] or y(x) = L–1{ L[f(x)]/(1 – λL[K(x)])}.

Abel Equation

The Volterra equation f(x) = y(t)/(x – t)α dt, 0 < α < 1 is the (singular) Abel equation. Its solution 
y(x) = (sin απ/π)(d/dx) F(t)/(x – t)1–αdt.

Approximate Method (Picard’s Method)

This method is one of successive approximations that is described for the equation y(x) = f(x) + λ
K(x, t)y(t) dt. Beginning with an initial guess y0(t) (often the value at the initial point a) generate the
next approximation with y1(x) = f(x) + K(x, t)y0(t) dt and continue with the general iteration

Then, by iterating, one studies the convergence of this process, as is described in the literature

Example 19.6.3. Let y(x) = 1 + xt[y(t)]2 dt, y(0) = 1, With y0(t) = 1 we find y1(x) = 1 + xt dt = 1
+ (x3/2) and y2(x) = 1 + xt[1 + (t3/2)2dt, and so forth.
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19.7 Approximation Methods

William F. Ames

The term approximation methods usually refers to an analytical process that generates a symb
approximation rather than a numerical one. Thus, 1 + x + x2/2 is an approximation of ex for small x.
This chapter introduces some techniques for approximating the solution of various operator equ

Perturbation

Regular Perturbation

This procedure is applicable to some equations in which a small parameter, ε, appears. Use this procedur
with care; the procedure involves expansion of the dependent variables and data in a power serie
small parameter. The following example illustrates the procedure.

Example 19.7.1. Consider the equation y″ + εy′ + y = 0, y(0) = 1, y′(0) = 0. Write y(x; ε) = y0(x) +
εy1(x) + ε2y2(x) + L, and the initial conditions (data) become

Equating like powers of ε in all three equations yields the sequence of equations

The solution for y0 is y0 = cos x and using this for y1 we find y1(x) = 1/2 (sin x – x cos x). So y(x; ε) =
cos x + ε(sin  x – x cos x)/2 + O(ε2). Appearance of the term x cos x indicates a secular term that becomes
arbitrarily large as x → ∞. Hence, this approximation is valid only for x ! 1/ε and for small ε. If an
approximation is desired over a larger range of x then the method of multiple scales is required

Singular Perturbation

The method of multiple scales is a singular method that is sometimes useful if the regular perturbation
method fails. In this case the assumption is made that the solution depends on two (or more) different
length (or time) scales. By trying various possibilities, one can determine those scales. The sca
treated as dependent variables when transforming the given ordinary differential equation into a
differential equation, but then the scales are treated as independent variables when solving the eq

Example 19.7.2. Consider the equation εy″ + y′ = 2, y(0) = 0, y(1) = 1. This is singular since (with ε
= 0) the resulting first-order equation cannot satisfy both boundary conditions. For the proble
proper length scales are u = x and v = x/ε. The second scale can be ascertained by substituting εnx for
x and requiring εy″ and y′ to be of the same order in the transformed equation. Then

and the equation becomes
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With y(x; ε) = y0(u, v) + εy1(u, v) + ε2y2(u, v) + L we have terms

Then y0(u, v) = A(u) + B(u)e–v and so the second equation becomes ∂2y1/∂v2 + ∂y1/∂v = 2 – A′(u) +
B′(u)e–v, with the solution y1(u, v) = [2 – A′(u)]v + vB′(u)e–v + D(u) + E(u)e–v. Here A, B, D and E are
still arbitrary. Now the solvability condition — “higher order terms must vanish no slower (as ε → 0)
than the previous term” (Kevorkian and Cole, 1981) — is used. For y1 to vanish no slower than y0 we
must have 2 – A′(u) = 0 and B′(u) = 0. If this were not true the terms in y1 would be larger than those
in y0 (v @ 1). Thus y0(u, v) = (2u + A0) + B0e–v, or in the original variables y(x; ε) ≈ (2x + A0) + B0e–x/ε

and matching to both boundary conditions gives y(x; ε) ≈ 2x – (1 – e–x/ε).

Boundary Layer Method

The boundary layer method is applicable to regions in which the solution is rapidly varying. See the
references at the end of the chapter for detailed discussion.

Iterative Methods

Taylor Series

If it is known that the solution of a differential equation has a power series in the independent va
(t), then we may proceed from the initial data (the easiest problem) to compute the Taylor se
differentiation.

Example 19.7.3. Consider the equation (d2x/dt) = – x – x2, x(0) = 1, x′(0) = 1. From the differential
equation, x″(0) = –2, and, since x- = –x′ –2xx′, x-(0) = –1 –2 = –3, so the four term approximation fo
x(t) ≈ 1 + t – (2t2/2!) – (3t3/3!) = 1 + t – t2 – t3/2. An estimate for the error at t = t1, (see a discussion
of series methods in any calculus text) is not greater than |d4x/dt4|max[(t1)4/4!], 0 ≤ t ≤ t1.

Picard’s Method

If the vector differential equation x′ = f(t, x), x(0) given, is to be approximated by Picard iteration, w
begin with an initial guess x0 = x(0) and calculate iteratively = f(t, xi–1).

Example 19.7.4. Consider the equation x′ = x + y2, y′ = y – x3, x(0) = 1, y(0) = 2. With x0 = 1, y0 = 2,
= 5, = 1, so x1 = 5t + 1, y1 = t + 2, since xi(0) = 1, yi(0) = 2 for i ≥ 0. To continue, use = xi

+  = yi –  A modification is the utilization of the first calculated term immediately in 
second equation. Thus, the calculated value of x1 = 5t + 1, when used in the second equation, gives 
= y0 – (5t + 1)3 = 2 – (125t3 + 75t2 + 15t + 1), so y1 = 2t – (125t4/4) – 25t3 – (15t2/2) – t + 2. Continue
with the iteration = xi +  = yi – (xi+1)3.

Another variation would be = xi+1 + (yi)3, = yi+1 – (xi+1)3.
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19.8 Integral Transforms

William F. Ames

All of the integral transforms are special cases of the equation g(s) = K(s, t)f(t)d t, in which g(s) is
said to be the transform of f(t), and K(s, t) is called the kernel of the transform. Table 19.8.1 shows the
more important kernels and the corresponding intervals (a, b).

Details for the first three transforms listed in Table 19.8.1 are given here. The details for the other
are found in the literature.

Laplace Transform

The Laplace transform of f(t) is g(s) = e–st f(t) dt. It may be thought of as transforming one class 
functions into another. The advantage in the operation is that under certain circumstances it repl
complicated functions by simpler ones. The notation L[f(t)] = g(s) is called the direct transform and
L–1[g(s)] = f(t) is called the inverse transform. Both the direct and inverse transforms are tabulated for
many often-occurring functions. In general L–1[g(s)] = (1/2 πi) estg(s) ds, and to evaluate this integral
requires a knowledge of complex variables, the theory of residues, and contour integration.

Properties of the Laplace Transform

Let L[f(t)] = g(s), L–1[g(s)] = f(t).

1. The Laplace transform may be applied to a function f(t) if f(t) is continuous or piecewise
continuous; if tn|f(t)| is finite for all t, t → 0, n < 1; and if e–at|f(t)| is finite as t → ∞ for some
value of a, a > 0.

2. L and L–1 are unique.
3. L[af(t) + bh(t)] = aL[f(t)] + bL[h(t)] (linearity).
4. L[eatf(t)] = g(s – a) (shift theorem).
5. L[(–t)kf(t)] = dkg/dsk; k a positive integer.

Example 19.8.1. L[sin a t] = e–st sin a t d t = a/(s2 + a2), s > 0. By property 5, 
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In this property it is apparent that the initial data are automatically brought into the computation

Example 19.8.2. Solve y″ + y = et, y(0) = 1, y′(0) = 1. Now L[y″] = s2L[y] – sy(0) – y′(0) = s2L[y] –
s – 1. Thus, using the linear property of the transform (property 3), s2L[y] + L[y] – s – 1 = L[et] = 1/(s
– 1). Therefore, L[y] =s2/[(s – 1)(s2 + 1)].

With the notations Γ(n + 1) = xne–x dx (gamma function) and Jn(t) the Bessel function of the first
kind of order n, a short table of Laplace transforms is given in Table 19.8.2.

7.

Example 19.8.3. Find f(t) if L[f(t)] = (1/s2)[1/(s2 – a2)]. L[1/a sinh a t] = 1/(s2 – a2). Therefore, f(t) =
[ sinh a t d t]d t = 1/a2[(sinh a t)/a – t].

Example 19.8.4. L[(sin a t)/t] = L[sin a t)d s = [a d s/(s2 + a2)] = cot–1(s/a).

9. The unit step function u(t – a) = 0 for t < a and 1 for t > a. L[u(t – a) = e–as/s.
10. The unit impulse function is δ(a) = u′(t – a) = 1 at t = a and 0 elsewhere. L[u′(t – a) = e–as.
11. L–1[e–asg(s)] =  f(t – a)u(t – a) (second shift theorem).
12. If f(t) is periodic of period b — that is, f(t + b) = f(t) — then L[f(t)] = [1/(1 – e–bs)] × e–stf(t) dt.

Example 19.8.5. The equation ∂2y/(∂t∂x) + ∂y/∂t + ∂y/∂x = 0 with (∂y/∂x)(0, x) = y(0, x) = 0 and y(t,
0) + (∂y/∂t)(t, 0) = δ(0) (see property 10) is solved by using the Laplace transform of y with respect to
t. With g(s, x) = e–sty(t, x) dt, the transformed equation becomes

Table 19.8.1 Kernels and Intervals of Various 
Integral Transforms

Name of Transform (a, b) K(s, t)

Laplace (0, ∞) e–st

Fourier (–∞, ∞)

Fourier cosine (0, ∞)

Fourier sine (0, ∞)

Mellin (0, ∞) ts–1

Hankel (0, ∞) tJv(st), v ≥ 
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f

or

The second (boundary) condition gives g(s, 0) + sg(s, 0) – y(0, 0) = 1 or g(s, 0) = 1/(1 + s). A solution
of the preceding ordinary differential equation consistent with this condition is g(s, x) = [1/(s + 1)]e–sx/(s+1).
Inversion of this transform gives y(t, x) = e–(t+x)I0  where I0 is the zero-order Bessel function o
an imaginary argument.

Convolution Integral

The convolution integral (faltung) of two functions f(t), r(t) is x(t) = f(t)* r(t) = f(τ)r(t – τ) d τ.

Example 19.8.6. t *  sin t = τ sin(t – τ) d τ = t – sin t.

13. L[f(t)]L[h(t)] = L[f(t) * h(t)].

Fourier Transform

The Fourier transform is given by F[f(t)] = f(t)e–ist d t = g(s) and its inverse by F–1[g(s)]
= g(s)eist d t = f(t). In brief, the condition for the Fourier transform to exist is that |f(t)|
d t < ∞, although certain functions may have a Fourier transform even if this is violated.

Table 19.8.2 Some Laplace Transforms

f(t) g(s) f(t) g(s)

1 e–at(1 – a t)

tn, n is a + integer
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Example 19.8.7. The function f(t) = 1 for – a ≤ t ≤ a and = 0 elsewhere has 

Properties of the Fourier Transform

Let F[f(t)] = g(s); F–1[g(s)] = f(t).

1. F[f(n)(t)] = (i s)n F[f(t)]
2. F[af(t) + bh(t)] = aF[f(t)] + bF[h(t)]
3. F[f(–t)] = g(–s)
4. F[f(at)] = 1/a g(s/a), a > 0
5. F[e–iwtf(t)] = g(s + w)
6. F[f(t + t1)] = g(s)
7. F[f(t)] = G(i s) + G(–i s) if f(t) = f(–t)(f(t) even)

F[f(t)] = G(i s) – G(–i s) if f(t) = –f(–t)(f odd)

where G(s) = L[f(t)]. This result allows the use of the Laplace transform tables to obtain the Fourier
transforms.

Example 19.8.8. Find F[e–a|t|] by property 7. The term e–a|t| is even. So L[e–at] = 1/(s + a). Therefore,
F[e–a|t|] = 1/(i s + a) + 1/(–i s + a) = 2a/(s2 + a2).

Fourier Cosine Transform

The Fourier cosine transform is given by Fc[f(t)] = g(s) = f(t) cos s t d t and its inverse by
[g(s)] = f(t) = g(s) cos s t d s. The Fourier sine transform Fs is obtainable by replacing

the cosine by the sine in the above integrals.

Example 19.8.9. Fc[f(t)], f(t) = 1 for 0 < t < a and 0 for a < t < ∞. Fc [f(t)] = cos s t d t =
(sin a s)/s.

Properties of the Fourier Cosine Transform

Fc[f(t)] = g(s).

1. Fc[af(t) + bh(t)] = aFc[f(t)] + bFc[h(t)]
2. Fc[f(at)] = (1/a) g (s/a)
3. Fc[f(at) cos bt] = 1/2a [g ((s + b)/a) + g((s – b)/a)], a, b > 0
4. Fc[t2nf(t)] = (– 1)n(d2ng)/(d s2n)
5. Fc[t2n+1f(t)] = (– 1)n(d2n+1)/(d s2n+1) Fs[f(t)]

Table 19.8.3 presents some Fourier cosine transforms.

Example 19.8.10. The temperature θ in the semiinfinite rod 0 ≤ x < ∞ is determined by the differential
equation ∂θ/∂t = k(∂2θ/∂x2) and the condition θ = 0 when t = 0, x ≥ 0; ∂θ/∂x = –µ = constant when x =
0, t > 0. By using the Fourier cosine transform, a solution may be found as θ(x, t) = (2µ/π) (cos px/p)
(1 – e–kp2t)  d p.
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Further Information

The references citing G. Doetsch, Handbuch der Laplace Transformation, vols. I-IV, Birkhauser, Basel,
1950–1956 (in German) and B. A. Ditkin and A. P. Prodnikav, Handbook of Operational Math-
ematics, Moscow, 1965 (in Russian) are the most extensive tables known. The latter refere
485 pages.

Table 19.8.3 Fourier Cosine Transforms
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19.9 Calculus of Variations

William F. Ames

The basic problem in the calculus of variations is to determine a function such that a certain functional,
often an integral involving that function and certain of its derivatives, takes on maximum or minimum
values. As an example, find the function y(x) such that y(x1) = y1, y(x2) = y2 and the integral (functional)
I = 2π y[1 + y′)2]1/2 d x is a minimum. A second example concerns the transverse deformationu(x,
t) of a beam. The energy functional I = [1/2 ρ (∂u/∂t)2 – 1/2 EI (∂2u/∂x2)2 + fu] d x d t is to be
minimized.

The Euler Equation

The elementary part of the theory is concerned with a necessary condition (generally in the form of a
differential equation with boundary conditions) that the required function must satisfy. To show m
ematically that the function obtained actually maximizes (or minimizes) the integral is much 
difficult than the corresponding problems of the differential calculus.

The simplest case is to determine a function y(x) that makes the integral I = F(x, y, y′) dx stationary
and that satisfies the prescribed end conditions y(x1) = y1 and y(x2) = y2. Here we suppose F has continuous
second partial derivatives with respect to x, y, and y′ = dy/dx. If y(x) is such a function, then it mus
satisfy the Euler equation (d/dx)(∂F/∂y′) – (∂F/∂y) = 0, which is the required necessary condition. T
indicated partial derivatives have been formed by treating x, y, and y′ as independent variables. Expandin
the equation, the equivalent form Fy′y′y″ + Fy′yy′ + (Fy′x – Fy) = 0 is found. This is second order in y
unless Fy′y′ = (∂2F)/[(∂y′)2] = 0. An alternative form 1/y′[d/dx(F – (∂F/∂y′)(dy/dx)) – (∂F/∂x)] = 0 is
useful. Clearly, if F does not involve x explicitly [(∂F/∂x) = 0] a first integral of Euler’s equation is F
– y′(∂F/∂y′) = c. If F does not involve y explicitly [(∂F/∂y) = 0] a first integral is (∂F/∂y′) = c.

The Euler equation for I = 2π y[1 + (y′)2]1/2 dx, y(x1) = y1, y(x2) = y2 is (d/dx)[yy′/[1 + (y′)2]1/2] –
[1 + (y′)2]1/2 = 0 or after reduction yy″ – (y′)2 – 1 = 0. The solution is y = c1 cosh(x/c1 + c2), where c1

and c2 are integration constants. Thus the required minimal surface, if it exists, must be obtain
revolving a catenary. Can c1 and c2 be chosen so that the solution passes through the assigned p
The answer is found in the solution of a transcendental equation that has two, one, or no so
depending on the prescribed values of y1 and y2.

The Variation

If F = F(x, y, y′), with x independent and y = y(x), then the first variation δF of F is defined to be δF
= (∂F/∂x) δy + (∂F/∂y) δy′ and δy′ = δ (dy/dx) = (d/dx) (δy) — that is, they commute. Note that the firs
variation, δF, of a functional is a first-order change from curve to curve, whereas the differential
function is a first-order approximation to the change in that function along a particular curve. The laws
of δ are as follows: δ(c1F + c2G) = c1δF + c2δG; δ(FG) = FδG + GδF; δ(F/G) = (GδF – FδG)/G2; if x
is an independent variable, δx = 0; if u = u(x, y); (∂/∂x)(δu) = δ(∂u/∂x), (∂/∂y) (δu) = δ(∂u/∂y).

A necessary condition that the integral I = F(x, y, y′) dx be stationary is that its (first) variation
vanish — that is, δI = δ F(x, y, y′) dx = 0. Carrying out the variation and integrating by parts yiel
of δI = [(∂F/∂y) – (d/dx)(∂F/∂y′)] δy dx + [(∂F/∂y′) = 0. The arbitrary nature of δy means the
square bracket must vanish and the last term constitutes the natural boundary conditions.

Example. The Euler equation of F(x, y, y′, y″) dx is (d2/dx2)(∂F/∂y″) – (d/dx)(∂F/∂y′) + (∂F/∂y) =
0, with natural boundary conditions {[(d/dx)(∂F/∂y″) – (∂F/∂y′)] = 0 and (∂F/∂y″) = 0. The
Euler equation of F(x, y, u, ux, uy, uxx, uxy, uyy) dx dy is (∂2/∂x2)(∂F/∂uxx) + (∂2/∂x∂y)(∂F/uxy) +
(∂2/∂y2)(∂F/∂uyy) – (∂/∂x)(∂F/∂ux) – (∂/∂y)(∂F/∂uy) + (∂F/∂u), and the natural boundary conditions are
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In the more general case of I = F(x, y, u, v, ux, uy, vx, vy) dx dy, the condition δI = 0 gives rise to
the two Euler equations (∂/∂x)(∂F/∂ux) + (∂/∂y)(∂F/∂uy) – (∂F/∂u) = 0 and (∂/∂x)(∂F/∂vx) + (∂/∂y)(∂F/∂vy)
– (∂F/∂v) = 0. These are two PDEs in u and v that are linear or quasi-linear in u and v. The Euler equation
for I = dx dy dz, from δI = 0, is Laplace’s equation uxx + uyy + uzz = 0.

Variational problems are easily derived from the differential equation and associated boundar
ditions by multiplying by the variation and integrating the appropriate number of times. To illus
let F(x), ρ(x), p(x), and w be the tension, the linear mass density, the natural load, and (constant) a
velocity of a rotating string of length L. The equation of motion is (d/dx)[F (dy/dx)] + ρw2y + p = 0. To
formulate a corresponding variational problem, multiply all terms by a variation δy and integrate over
(0, L) to obtain

The second and third integrals are the variations of 1/2 ρw2y2 and py, respectively. To treat the first
integral, integrate by parts to obtain

So the variation formulation is

The last term represents the natural boundary conditions. The term 1/2 ρw2y2 is the kinetic energy per
unit length, the term –py is the potential energy per unit length due to the radial force p(x), and the term
1/2 F(dy/dx)2 is a first approximation to the potential energy per unit length due to the tension F(x) in
the string. Thus the integral is often called the energy integral.

Constraints

The variations in some cases cannot be arbitrarily assigned because of one or more auxiliary co
that are usually called constraints. A typical case is the functional F(x, u, v, ux, vx) dx with a constraint
φ(u, v) = 0 relating u and v. If the variations of u and v (δu and δv) vanish at the end points, then th
variation of the integral becomes
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be
The variation of the constraint φ(u, v) = 0, φuδu + φvδv = 0 means that the variations cannot both 
assigned arbitrarily inside (x1, x2), so their coefficients need not vanish separately. Multiply φuδu + φvδv
= 0 by a Lagrange multiplier λ (may be a function of x) and integrate to find (λφuδu + λφvδv) dx =
0. Adding this to the previous result yields

which must hold for any λ. Assign λ so the first square bracket vanishes. Then δv can be assigned to
vanish inside (x1, x2) so the two systems

plus the constraint φ(u, v) = 0 are three equations for u, v and λ.
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19.10 Optimization Methods

George Cain

Linear Programming

Let A be an m × n matrix, b a column vector with m components, and c a column vector with n
components. Suppose m < n, and assume the rank of A is m. The standard linear programming problem
is to find, among all nonnegative solutions of Ax = b, one that minimizes

This problem is called a linear program. Each solution of the system Ax = b is called a feasible solution,
and the feasible set is the collection of all feasible solutions. The function cTx = c1x1 + c2x2 + L + cnxn

is the cost function, or the objective function. A solution to the linear program is called an optimal
feasible solution.

Let B be an m × n submatrix of A made up of m linearly independent columns of A, and let C be
the m × (n – m) matrix made up of the remaining columns of A. Let xB be the vector consisting of the
components of x corresponding to the columns of A that make up B, and let xC be the vector of the
remaining components of x, that is, the components of x that correspond to the columns of C. Then the
equation Ax = b may be written BxB + CxC = b. A solution of BxB = b together with xC = 0 gives a
solution x of the system Ax = b. Such a solution is called a basic solution, and if it is, in addition,
nonnegative, it is a basic feasible solution. If it is also optimal, it is an optimal basic feasible solution.
The components of a basic solution are called basic variables.

The Fundamental Theorem of Linear Programming says that if there is a feasible solution, the
basic feasible solution, and if there is an optimal feasible solution, there is an optimal basic fe
solution. The linear programming problem is thus reduced to searching among the set of basic s
for an optimal solution. This set is, of course, finite, containing as many as n!/[m!(n – m)!] points. In
practice, this will be a very large number, making it imperative that one use some efficient s
procedure in seeking an optimal solution. The most important of such procedures is the simplex method,
details of which may be found in the references.

The problem of finding a solution of Ax ≤ b that minimizes cTx can be reduced to the standard proble
by appending to the vector x an additional m nonnegative components, called slack variables. The vector
x is replaced by z, where zT = [x1,x2…xn s1,s2…xm], and the matrix A is replaced by B = [A I ], where I
is the m × m identity matrix. The equation Ax = b is thus replaced by Bz = Ax + s = b, where sT =
[s1,s2,…,sm]. Similarly, if inequalities are reversed so that we have Ax ≤ b, we simply append –s to the
vector x. In this case, the additional variables are called surplus variables.

Associated with every linear programming problem is a corresponding dual problem. If the primal
problem is to minimize cTx subject to Ax ≥ b, and x ≥ 0, the corresponding dual problem is to maximize
yTb subject to tTA ≤ cT. If either the primal problem or the dual problem has an optimal solution
also does the other. Moreover, if xp is an optimal solution for the primal problem and yd is an optimal
solution for the corresponding dual problem cTxp = 

Unconstrained Nonlinear Programming

The problem of minimizing or maximizing a sufficiently smooth nonlinear function f(x) of n variables,
xT = [x1,x2…xn], with no restrictions on x is essentially an ordinary problem in calculus. At a minim
or maximizer x*, it must be true that the gradient of f vanishes:

  c xT = + + +c x c x c xn n1 1 2 2 L

y bd
T .

∇ ( ) =f x* 0
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Thus x* will be in the set of all solutions of this system of n generally nonlinear equations. The solutio
of the system can be, of course, a nontrivial undertaking. There are many recipes for solving s
of nonlinear equations. A method specifically designed for minimizing f is the method of steepest descen.
It is an old and honorable algorithm, and the one on which most other more complicated algorith
unconstrained optimization are based. The method is based on the fact that at any point x, the d
of maximum decrease of f is in the direction of –∇ f(x). The algorithm searches in this direction for 
minimum, recomputes ∇ f(x) at this point, and continues iteratively. Explicitly:

1. Choose an initial point x0.
2. Assume xk has been computed; then compute yk = ∇ f(xk), and let tk ≥ 0 be a local minimum of

g(t) = f(xk – tyk). Then xk+1 = xk – tkyk.
3. Replace k by k + 1, and repeat step 2 until tk is small enough.

Under reasonably general conditions, the sequence (xk) converges to a minimum of f.

Constrained Nonlinear Programming

The problem of finding the maximum or minimum of a function f(x) of n variables, subject to the
constraints

is made into an unconstrained problem by introducing the new function L(x):

where zT = [λ1,λ2,…,λm] is the vector of Lagrange multipliers. Now the requirement that ∇ L(x) = 0,
together with the constraints a(x) = b, give a system of n + m equations

for the n + m unknowns x1, x2…, xn, λ1λ2…, λm that must be satisfied by the minimizer (or maximizer) 
The problem of inequality constraints is significantly more complicated in the nonlinear case th

the linear case. Consider the problem of minimizing f(x) subject to m equality constraints a(x) = b, and
p inequality constraints c(x) ≤ d [thus a(x) and b are vectors of m components, and c(x) and d are
vectors of p components.] A point x* that satisfies the constraints is a regular point if the collection

where
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is linearly independent. If x* is a local minimum for the constrained problem and if it is a regular po
there is a vector z with m components and a vector w ≥ 0 with p components such that

These are the Kuhn-Tucker conditions. Note that in order to solve these equations, one needs to k
for which j it is true that cj(x*) = 0. (Such a constraint is said to be active.)
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19.11 Engineering Statistics

Y. L. Tong

Introduction

In most engineering experiments, the outcomes (and hence the observed data) appear in a ran
on deterministic fashion. For example, the operating time of a system before failure, the tensile s
of a certain type of material, and the number of defective items in a batch of items produced 
subject to random variations from one experiment to another. In engineering statistics, we ap
theory and methods of statistics to develop procedures for summarizing the data and making st
inferences, thus obtaining useful information with the presence of randomness and uncertainty.

Elementary Probability

Random Variables and Probability Distributions

Intuitively speaking, a random variable (denoted by X, Y, Z, etc.) takes a numerical value that depen
on the outcome of the experiment. Since the outcome of an experiment is subject to random va
the resulting numerical value is also random. In order to provide a stochastic model for describi
probability distribution of a random variable X, we generally classify random variables into two group
the discrete type and the continuous type. The discrete random variables are those which, tec
speaking, take a finite number or a countably infinite number of possible numerical values. (In
engineering applications they take nonnegative integer values.) Continuous random variables 
outcome variables such as time, length or distance, area, and volume. We specify a function f(x), called
the probability density function (p.d.f.) of a random variable X, such that the random variable X takes
a value in a set A (or real numbers) as given by

(9.11.1)

By letting A be the set of all values that are less than or equal to a fixed number t, i.e., A = (–∞,t), the
probability function P[X ≤ t], denoted by F(t), is called the distribution function of X. We note that, by
calculus, if X is a continuous random variable and if F(x) is differentiable, then f(x) = F(x).

Expectations

In many applications the “payoff” or “reward” of an experiment with a numerical outcome X is a specific
function of X (u(X), say). Since X is a random variable, u(X) is also a random variable. We define th
expected value of u(X) by 

(9.11.12)

provided of course, that, the sum or the integral exists. In particular, if u(x) = x, the EX ≡ µ is called
the mean of X (of the distribution) and E(X – µ)2 ≡ σ2 is called the variance of X (of the distribution).
The mean is a measurement of the central tendency, and the variance is a measurement of the d
of the distribution.

P X A

f x A X

f x dx A X

x A
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Some Commonly Used Distributions

Many well-known distributions are useful in engineering statistics. Among the discrete distributions, the
hypergeometric and binomial distributions have applications in acceptance sampling problems a
quality control, and the Poisson distribution is useful for studying queuing theory and other relat
problems. Among the continuous distributions, the uniform distribution concerns random numbers an
can be applied in simulation studies, the exponential and gamma distributions are closely related to the
Poisson distribution, and they, together with the Weibull distribution, have important applications in life
testing and reliability studies. All of these distributions involve some unknown parameter(s), hence thei
means and variances also depend on the parameter(s). The reader is referred to textbooks in this area
for details. For example, Hahn and Shapiro (1967, pp. 163–169 and pp. 120–134) contains a co
hensive listing of these and other distributions on their p.d.f.’s and the graphs, parameter(s), mean
variances, with discussions and examples of their applications.

The Normal Distribution

Perhaps the most important distribution in statistics and probability is the normal distribution (also known
as the Gaussian distribution). This distribution involves two parameters: µ and σ2, and its p.d.f. is given by

(9.11.3)

for –∞ < µ < ∞, σ2 > 0, and –∞ < χ < ∞. It can be shown analytically that, for a p.d.f. of this form, the
values of µ and σ2 are, respectively, that of the mean and the variance of the distribution. Further, the
quantity, σ =  is called the standard deviation of the distribution. We shall use the symbol X ~
N(µ, σ2) to denote that X has a normal distribution with mean µ and variance σ2. When plottting the
p.d.f. f(x; µ, σ2) given in Equation (19.11.3) we see that the resulting graph represents a bell-s
curve symmetric about µ, as shown in Figure 19.11.1.

If a random variable Z has an N(0,1) distribution, then the p.d.f. of Z is given by (from Equation
(19.11.3))

(9.11.4)

The distribution function of Z,

(9.11.5)

FIGURE 19.11.1 The normal curve with mean µ and variance σ2.
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cannot be given in a closed form, hence it has been tabulated. The table of Φ(z) can be found in most
textbooks in statistics and probability, including those listed in the references at the end of this s
(We note in passing that, by the symmetry property, Φ(z) + Φ(–z) = 1 holds for all z.)

Random Sample and Sampling Distributions

Random Sample and Related Statistics

As noted in Box et al., (1978), the design and analysis of engineering experiments usually involv
following steps:

1. The choice of a suitable stochastic model by assuming that the observations follow a 
distribution. The functional form of the distribution (or the p.d.f.) is assumed to be known, ex
the value(s) of the parameters(s).

2. Design of experiments and collection of data.
3. Summarization of data and computation of certain statistics.
4. Statistical inference (including the estimation of the parameters of the underlying distributio

the hypothesis-testing problems).

In order to make statistical inference concerning the parameter(s) of a distribution, it is essen
first study the sampling distributions. We say that X1, X2, …, Xn represent a random sample of size n if
they are independent random variables and each of them has the same p.d.f., f(x). (Due to space
limitations, the notion of independence will not be carefully discussed here. Nevertheless, we s
X1, X2, …, Xn are independent if

(19.11.6)

holds for all sets A1, A2, …, An.) Since the parameter(s) of the population is (are) unknown, the popula
mean µ and the population variance σ2 are unknown. In most commonly used distributions µ and σ2

can be estimated by the sample mean  and the sample variance S2, respectively, which are given by

(19.11.7)

(The second equality in the formula for S2 can be verified algebraically.) Now, since X1, X2, …, Xn are
random variables  and S2 are also random variables. Each of them is called a statistic and h
probability distribution which also involves the unknown parameter(s). In probability theory ther
two fundamental results concerning their distributional properties.

Theorem 1.  (Weak Law of Large Numbers). As the sample size n becomes large,  converges to µ
in probability and S2 converges to σ2 in probability. More precisely, for every fixed positive numberε
> 0 we have

(19.11.8)

as n → ∞.

Theorem 2.  (Central Limit Theorem). As n becomes large, the distribution of the random variable
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(19.11.9)

has approximately an N(0,1) distribution. More precisely,

(19.11.10)

Normal Distribution-Related Sampling Distributions

One-Sample Case

Additional results exist when the observations come from a normal population. If X1, X2, …, Xn represent
a random sample of size n from an N(µ,σ2) population, then the following sample distributions are useful:

Fact 3.  For every fixed n the distribution of Z given in Equation (19.11.9) has exactly an N(0,1)
distribution.

Fact 4.  The distribution of the statistic  where  is the sample standard
deviation, is called a Student’s t distribution with ν = n – 1 degrees of freedom, in symbols, t(n – 1).

This distribution is useful for making inference on µ when σ2 is unknown; a table of the percentiles
can be found in most statistics textbooks.

Fact 5.  The distribution of the statistic W = (n – 1)S2/σ2 is called a chi-squared distribution with ν =
n – 1 degrees of freedom, in symbols χ2(ν).  
Such a distribution is useful in making inference on σ2; a table of the percentiles can also be found
most statistics books.

Two-Sample Case

In certain applications we may be interested in the comparisons of two different treatments. Suppose
that independent samples from treatments T1 and T2 are to be observed as shown in Table 19.11.1.  .

The difference of the population means (µ1 – µ2) and the ratio of the population variances can be
estimated, respectively, by  and  The following facts summarize the distributions of
these statistics:

Fact 6.  Under the assumption of normality,  has an N(µ1 – µ2,  distribu-
tion; or equivalently, for all n1, n2 the statistic.  

(19.11.11)

has an N(0,1) distribution.

Fact 7.  When  the common population variance is estimated by

(19.11.12)

TABLE 19.11.1 Summarization of Data for a Two-Sample Problem

Treatment Observations Distri bution Sample Size Sample Mean Sample Variance

T1 n1

T2 n2
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and  has a χ2(n1 + n2 – 2) distribution.

Fact 8.  When  the statistic

(19.11.13)

has a t(n1 + n2 – 2) distribution, where 

Fact 9.  The distribution of  is called an F distribution with degrees of freedo
(n1 – 1, n2 – 1), in symbols, F(n1 – 1, n2 – 1),  

The percentiles of this distribution have also been tabulated and can be found in statistics bo
In the following two examples we illustrate numerically how to find probabilities and percen

using the existing tables for the normal, Student’s t, chi-squared, and F distributions.

Example 10.  Suppose that in an experiment four observations are taken, and that the popula
assumed to have a normal distribution with mean µ and variance σ2. Let  and S2 be the sample mean
and sample variance as given in Equation (19.11.7).

(a) If, based on certain similar experiments conducted in the past, we know that σ2 = 1.82 × 10–6 (σ
= 1.8 × 10–3), then from Φ(–1.645) = 0.05 and Φ(1.96) = 0.975 we have

or equivalently,

(b) The statistic  has a Student’s t distribution with 3 degrees of freedom (in symbol
t(3)). From the t table we have 

which yields

or equivalently,

This is, in fact, the basis for obtaining the confidence interval for µ given in Equation (19.11.17) when
σ2 is unknown.

(c) The statistic 3S2/σ2 has a chi-squared distribution with 3 degrees of freedom (in symbols, χ2(3)).
Thus from the chi-squared table we have P[0.216 ≤ 3S2/σ2 ≤ 9.348] = 0.95, which yields
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and it forms the basis for obtaining a confidence interval for σ2 as given in Equation (19.11.18).

Example 11.  Suppose that in Table 19.11.1 (with two treatments) we have n1 = 4 and n2 = 5, and we
let  and  denote the corresponding sample means and sample variances, respectively.

(a) Assume that  where the common variance is unknown and is estimated by  given in
Equation (19.11.12). Then the statistic

has a t(7) distribution. Thus from the t table we have

which is equivalent to saying that

(b) The statistic  has an F(3,4) distribution. Thus from the F-table we have

or equivalently,

The distributions listed above (normal, Student’s t, chi-squared, and F) form an integral part of the
classical statistical inference theory, and they are developed under the assumption that the observations
follow a normal distribution. When the distribution of the population is not normal and inference on t
populations means is to be made, we conclude that (1) if the sample sizes n1, n2 are large, then the
statistic Z in Equation (19.11.11) has an approximate N(0,1) distribution and (2) in the small-sample
case, the exact distribution of  ) depends on the population p.d.f. There are several
analytical methods for obtaining it, and those methods can be found in statistics textbooks.

Confidence Intervals

A method for estimating the population parameters based on the sample mean(s) and sample variance(s)
involves the confidence intervals for the parameters.

One-Sample Case

1. Confidence Interval for µ When σ2 is Known.  Consider the situation in which a random sample 
size n is taken from an N(µ,σ2) population and σ2 is known. An interval, I1, of the form I1 = (  – d,

 + d) (with width 2d) is to be constructed as a “confidence interval or µ.” If we make the assertion
that µ is in this interval (i.e., µ is bounded below by  – d and bounded above by  + d), then
sometimes this assertion is correct and sometimes it is wrong, depending on the value of  in a given
experiment. If for a fixed α value we would like to have a confidence probability (called confidence
coefficient) such that
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then we need to choose the value of d to satisfy  i.e.,

(19.11.15)

where zα/2 is the (1 – α/2)th percentile of the N(0,1) distribution such that Φ(zα/2) = 1 – α/2. To see this,
we note that from the sampling distribution of  (Fact 3) we have

(19.11.16)

We further note that, even when the original population is not normal, by Theorem 2 the confidence
probability is approximately (1 – α) when the sample size is reasonably large.

2. Confidence Interval for µ When σ 2 is Unknown. Assume that the observations are from an N(µ,σ2)
population. When σ2 is unknown, by Fact 4 and a similar argument we see that

(19.11.17)

is a confidence interval for µ with confidence probability 1 – α, where tα/2(n – 1) is the (1 – α/2)th
percentile of the t(n – 1) distribution.

3. Confidence Interval for σ 2.  If, under the same assumption of normality, a confidence interval for σ2

is needed when µ is unknown, then

(19.11.18)

has a confidence probability 1 – α, when (n – 1) and (n – 1) are the (α/2)th and (1 – α/2)th
percentiles, respectively, of the χ2(n – 1) distribution.

Two-Sample Case

1. Confidence Intervals for µ1 – µ2 When  are Known. Consider an experiment that involves
the comparison of two treatments, T1 and T2, as indicated in Table 19.11.1. If a confidence interval for
δ = µ1 – µ2 is needed when  and  are unknown, then by Fact 6 and a similar argument, the
confidence interval

(19.11.19)

has a confidence probability 1 – α.

2. Confidence Interval for µ1 – µ2 when  are Unknown but Equal. Under  the  add i t i ona l
assumption that  but the common variance is unknown, then by Fact 8 the confidence interval
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(19.11.20)

has a confidence probability 1 – α, where

(19.11.21)

3. Confidence Interval for .  A confidence interval for the ratio of the variances  can be
obtained from the F distribution (see Fact 9), and the confidence interval

(19.11.22)

has a confidence probability 1 – α, where F1-α/2(n1 – 1, n2 – 1) and Fα/2(n1 – 1, n2 – 1) are, respectively,
the (α/2)th and (1 – α/2)th percentiles of the F(n1 – 1, n2 – 1) distribution.

Testing Statistical Hypotheses

A statistical hypothesis concerns a statement or assertion about the true value of the parameter in a given
distribution. In the two-hypothesis problems, we deal with a null hypothesis and an alternative hypothesis,
denoted by H0 and H1, respectively. A decision is to be made, based on the data of the experiment, to
either accept H0 (hence reject H1) or reject H0 (hence accept H1). In such a two-action problem, we may
commit two types of errors: the type I error is to reject H0 when it is true, and the type II error is to
accept H0 when it is false. As a standard practice, we do not reject H0 unless there is significant evidence
indicating that it may be false. (In doing so, the burden of proof that H0 is false is on the experimenter.)
Thus we usually choose a small fixed number, α (such as 0.05 or 0.01), such that the probability 
committing a type I error is at most (or equal to) α. With such a given α, we can then determine the
region in the data space for the rejection of H0 (called the critical region).

One-Sample Case

Suppose that X1, X2, …, Xn represent a random sample of size n from an N(µ,σ2) population, and 
and S2 are, respectively, the sample mean and sample variance.

1. Test for Mean. In testing

when σ2 is known, we reject H0 when  is large. To determine the cut-off point, we note (by Fact 3)
that the statistic  has an N(0,1) distribution under H0. Thus, if we decide to reject
H0 when Z0 > zα, then the probability of committing a type I error is α. As a consequence, we apply th
decision rule

Similarly, from the distribution of Z0 under H0 we can obtain the critical region for the other types
of hypotheses. When σ2 is unknown, then by Fact 4  has a t(n – 1) distribution under
H0. Thus the corresponding tests can be obtained by substituting tα(n – 1) for zα and S for σ. The tests
for the various one-sided and two-sided hypotheses are summarized in Table 19.11.2 below. For each
set of hypotheses, the critical region given on the first line is for the case when σ2 is known, and that
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given on the second line is for the case when σ2 is unknown. Furthermore, tα and tα/2 stand for tα(n –
1) and tα/2(n – 1), respectively.

2. Test for Variance.  In testing hypotheses concerning the variance σ2 of a normal distribution, use Fact
5 to assert that, under H0: σ2 =  the distribution of w0 = (n – 1)  is χ2(n – 1). The corresponding
tests and critical regions are summarized in the following table  and  stand for (n – 1) and

(n – 1), respectively):

Two-Sample Case

In comparing the means and variances of two normal populations, we once again refer to Table 19.11.1
for notation and assumptions.

1. Test for Difference of Two Means. Let δ = µ1 – µ2 be the difference of the two population means.
In testing H0: δ = δ0 vs. a one-sided or two-sided alternative hypothesis, we note that, for

(19.11.23)

and

(19.11.24)

TABLE 19.11.2 One-Sample Tests for Mean

Null Hypothesis H0 Alternative Hypothesis H1 Critical Region

µ = µ0 or µ ≤ µ0 µ = µ1 > µ0 or µ > µ0

µ = µ0 or µ ≥ µ0 µ = µ1 < µ0 or µ < µ0

µ = µ0 µ ≠ µ0

TABLE 19.11.3 One-Sample Tests for Variance
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Z0 = [  – δ0]/τ has an N(0,1) distribution under H0 and T0 = [  – δ0]/ν has a t(n1 +
n2 – 2) distribution under H0 when  Using these results, the corresponding critical regions
one-sided and two-sided tests can be obtained, and they are listed below. Note that, as in the one
case, the critical region given on the first line for each set of hypotheses is for the case of 
variances, and that given on the second line is for the case in which the variances are equal but u
Further, tα and tα/2 stand for tα(n1 + n2 – 2) and tα/2(n1 + n2 – 2), respectively.

A Numerical Example

In the following we provide a numerical example for illustrating the construction of confidence inte
and hypothesis-testing procedures. The example is given along the line of applications in Wad
(1990, p. 4.21) with artificial data.

Suppose that two processes (T1 and T2) manufacturing steel pins are in operation, and that a rand
sample of 4 pins (or 5 pins) was taken from the process T1 (the process T2) with the following results
(in units of inches):

Simple calculation shows that the observed values of sample means sample variances, and
standard deviations are:

One-Sample Case

Let us first consider confidence intervals for the parameters of the first process, T1, only.

1. Assume that, based on previous knowledge of processes of this type, the variance is kn
be  = 1.802 × 10–6 (σ1 = 0.0018). Then from the normal table (see, e.g., Ross (1987, p. 
we have z0.025 = 1.96. Thus a 95% confidence interval for µ1 is

TABLE 19.11.4 Two-Sample Tests for Difference of Two Means

Null Hypothesis H0 Alternative Hypothesis H1 Critical Region

δ = δ or δ ≤ δ0 δ = δ1 > δ0 or δ > δ0

δ = δ0 or δ ≥ δ0 δ = δ1 < δ0 or δ < δ0

δ = δ0 δ ≠ δ0
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or (0.7598, 0.7634) (after rounding off to the 4th decimal place).
2. If  is unknown and a 95% confidence interval for µ1 is needed then, for t0.023 (3) = 3.182 (see,

e.g., Ross, 1987, p. 484) the confidence interval is

or (0.7587, 0.7645)
3. From the chi-squared table with 4 – 1 = 3 degrees of freedom, we have (see, e.g., Ross, 

483)  = 0.216,  = 9.348. Thus a 95% confidence interval for  is (3 × 3.280 ×
10–6/9.348, 3 × 3.280 × 10–6/0.216), or (1.0526 × 10–6, 45,5556 × 10–6).

4. In testing the hypotheses

with a = 0.01 when  is unknown, the critical region is  > 0.76 + 4.541 × 0.001811/  =
0.7641. Since the observed value  is 0.7616, H0 is accepted. That is, we assert that there is 
significant evidence to call for the rejection of H0.

Two-Sample Case

If we assume that the two populations have a common unknown variance, we can use the Stut
distribution (with degree of freedom ν = 4 + 5 – 2 = 7) to obtain confidence intervals and to t
hypotheses for µ1 – µ2. We first note that the data given above yield

and  = 0.0062.

1. A 98% confidence interval for µ1 – µ2 is (0.0062 – 2.998ν, 0.0062 + 2.998ν) or (0.0025, 0.0099).
2. In testing the hypotheses H0: µ1 = µ2 (i.e., µ1 – µ2 = 0) vs. H1: µ1 > µ2 with α = 0.05, the critical

region is  > 1.895ν = 2.3172  × 10–3. Thus H0 is rejected; i.e., we conclude that ther
is significant evidence to indicate that µ1 > µ2 may be true.

3. In testing the hypotheses H0: µ1 = µ2 vs. µ1 ≠ µ2 with α = 0.02, the critical region is 
> 2.998ν = 3.6660  × 10–3. Thus H0 is rejected. We note that the conclusion here is consis
with the result that, with confidence probability 1 – α = 0.98, the confidence interval for (µ1 –
µ2) does not contain the origin.

Concluding Remarks

The history of probability and statistics goes back to the days of the celebrated mathematician
Gauss and P. S. Laplace. (The normal distribution, in fact, is also called the Gaussian distributio
theory and methods of classical statistical analysis began its developments in the late 1800s a
1900s when F. Galton and R.A. Fisher applied statistics to their research in genetics, when Karl P
developed the chi-square goodness-of-fit method for stochastic modeling, and when E.S. Pear
J. Neyman developed the theory of hypotheses testing. Today statistical methods have been foun
in analyzing experimental data in biological science and medicine, engineering, social science
many other fields. A non-technical review on some of the applications is Hacking (1984).
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Applications of statistics in engineering include many topics. In addition to those treated in
section, other important ones include sampling inspection and quality (process) control, relia
regression analysis and prediction, design of engineering experiments, and analysis of variance
space limitations, these topics are not treated here. The reader is referred to textbooks in this 
further information. There are many well-written books that cover most of these topics, the follo
short list consists of a small sample of them.
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19.12 Numerical Methods

William F. Ames

Introduction

Since many mathematical models of physical phenomena are not solvable by available mathe
methods one must often resort to approximate or numerical methods. These procedures do n
exact results in the mathematical sense. This inexact nature of numerical results means we m
attention to the errors. The two errors that concern us here are round-off errors and truncation errors.

Round-off errors arise as a consequence of using a number specified by m correct digits to approximate
a number which requires more than m digits for its exact specification. For example, using 3.14159
approximate the irrational number π. Such errors may be especially serious in matrix inversion o
any area where a very large number of numerical operations are required. Some attempts at h
these errors are called enclosure methods. (Adams and Kulisch, 1993).

Truncation errors arise from the substitution of a finite number of steps for an infinite sequen
steps (usually an iteration) which would yield the exact result. For example, the iteration yn(x) = 1
+ xtyn–1(t)dt, y(0) = 1 is only carried out for a few steps, but it converges in infinitely many steps.

The study of some errors in a computation is related to the theory of probability. In what follo
relation for the error will be given in certain instances.

Linear Algebra Equations

A problem often met is the determination of the solution vector u = (u1, u2, …, un)T for the set of linear
equations Au = v where A is the n × n square matrix with coefficients, aij (i, j = 1, …, n), v = (v1, …,
vn)T and i denotes the row index and j the column index.

There are many numerical methods for finding the solution, u, of Au = v. The direct inversion of A
is usually too expensive and is not often carried out unless it is needed elsewhere. We shall on
few methods. One can check the literature for the many methods and computer software available
of the software is listed in the References section at the end of this chapter. The methods are
subdivided into direct (once through) or iterative (repeated) procedures.

In what follows, it will often be convenient to partition the matrix A into the form A = U + D + L,
where U, D, and L are matrices having the same elements as A, respectively, above the main diagona
on the main diagonal, and below the main diagonal, and zeros elsewhere. Thus, 

We also assume the ujs are not all zero and det A ≠ 0 so the solution is unique.

Direct Methods

Gauss Reduction.This classical method has spawned many variations. It consists of dividing the
equation by a11 (if a11 = 0, reorder the equations to find an a11 ≠ 0) and using the result to eliminate th
terms in u1 from each of the succeeding equations. Next, the modified second equation is divid

(if = 0, a reordering of the modified equations may be necessary) and the resulting equa
used to eliminate all terms in u2 in the succeeding modified equations. This elimination is done n times
resulting in a triangular system:

∫ 0
x
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where and represent the specific numerical values obtained by this process. The solution is o
by working backward from the last equation. Various modifications, such as the Gauss-Jordan red
the Gauss-Doolittle reduction, and the Crout reduction, are described in the classical reference a
by Bodewig (1956). Direct methods prove very useful for sparse matrices and banded matrices th
arise in numerical calculation for differential equations. Many of these are available in computer pa
such as IMSL, Maple, Matlab, and Mathematica.

The Tridiagonal Algorithm.When the linear equations are tridiagonal, the system

can be solved explicitly for the unknown, thereby eliminating any matrix operations.
The Gaussian elimination process transforms the system into a simpler one of upper bidiagonal form.

We designate the coefficients of this new system by  and we note that

The coefficients are calculated successively from the relations

and, of course, cn = 0.
Having completed the elimination  we examine the new system and see that the nth equation is now 

Substituting this value into the (n – 1)st equation,
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we have

Thus, starting with un, we have successively the solution for ui as

Algorithm for Pentadiagonal Matrix.The equations to be solved are

for 1 ≤ i ≤ R with a1 = b1 = a2 = eR–1 = dR = eR = 0.
The algorithm is as follows. First, compute

and

Then, for 3 ≤ i ≤ R – 2, compute

Next, compute

u d c un n n n− − −= ′ − ′1 1 1
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The βi and µi are used only to compute δi, λ i, and γi, and need not be stored after they are comput
The δi, λ i, and γi, must be stored, as they are used in the back solution. This is 

and

for R – 2 ≥ i ≥ 1.

General Band Algorithm.The equations are of the form

for 1 ≤ j ≤ N, N ≥ M. The algorithm used is as follows:

The forward solution (j = 1, …, N) is

The back solution (j = N, …, 1) is
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Cholesky Decomposition.When the matrix A is a symmetric and positive definite, as it is for man
discretizations of self-adjoint positive definite boundary value problems, one can improve consid
on the band procedures by using the Cholesky decomposition. For the system Au = v, the Matrix A can
be written in the form

where L is lower triangular, U is upper triangular, and D is diagonal. If A = A′ (A′ represents the transpos
of A), then

Hence, because of the uniqueness of the decomposition.

and therefore,

that is,

The system Au = v is then solved by solving the two triangular system

followed by

To carry out the decomposition A = B′B, all elements of the first row of A, and of the derived system
are divided by the square root of the (positive) leading coefficient. This yields smaller rounding 
than the banded methods because the relative error of is only half as large as that of a itself. Also,
taking the square root brings numbers nearer to each other (i.e., the new coefficients do not d
widely as the original ones do). The actual computation of B = (bij), j > i, is given in the following:

X W Xj j j
p

p

M

j p= − ( )

=
+∑γ

1

A I L D I U= +( ) +( )

A A I U D I L= ′ = +( )′ +( )′

I L I U I U+ = +( )′ = + ′

A I U D I U= +( )′ +( )

A B B B D I U= ′ = +( ),  where 

′ =B w v

Bu w=

a
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Iterative Methods

Iterative methods consist of repeated application of an often simple algorithm. They yield the
answer only as the limit of a sequence. They can be programmed to take care of zeros in A and are self-
correcting. Their structure permits the use of convergence accelerators, such as overrelaxation,
acceleration, or Chebyshev acceleration.

Let aii > 0 for all i and detA ≠ 0. With A = U + D + L as previously described, several iteratio
methods are described for (U + D + L)u = v.

Jacobi Method (Iteration by total steps).Since u = –D–1[U + L]u + D–1v, the iteration u(k) is u(k) = –D–1[U
+ L]u(k–1) + D–1v. This procedure has a slow convergent rate designated by R, 0 < R ! 1.

Gauss-Seidel Method (Iteration by single steps). u(k) = –(L + D)–1Uu(k–1) + (L + D)–1v. Convergence rate
is 2R, twice as fast as that of the Jacobi method.

Gauss-Seidel with Successive Overrelaxation (SOR).Let be the ith components of the Gauss
Seidel iteration. The SOR technique is defined by

where 1 < ω < 2 is the overrelaxation parameter. The full iteration is u(k) = (D + ω L)–1{[(1 – ω)D – ω
U]u(k–1) + ω v}. Optimal values of ω can be computed and depend upon the properties of A (Ames,
1993). With optimal values of ω, the convergence rate of this method is 2R  which is much larger
than that for Gauss-Seidel (R is usually much less than one).

For other acceleration techniques, see the literature (Ames, 1993).

Nonlinear Equations in One Variable

Special Methods for Polynomials

The polynomial P(x) = a0xn + a1xn–1 + L + an–1x + an = 0, with real coefficients aj, j = 0, …, n, has
exactly n roots which may be real or complex.

If all the coefficients of P(x) are integers, then any rational roots, say r/s (r and s are integers with
no common factors), of P(x) = 0 must be such that r is an integral divisor of an and s is an integral
division of a0. Any polynomial with rational coefficients may be converted into one with integ
coefficients by multiplying the polynomial by the lowest common multiple of the denominators o
coefficients.

Example. x4 – 5x2/3 + x/5 + 3 = 0. The lowest common multiple of the denominators is 15. Multiply
by 15, which does not change the roots, gives 15x4 – 25x2 + 3x + 45 = 0. The only possible rationa
roots r/s are such that r may have the value ±45, ±15, ±5, ±3, and ±1, while s may have the values ±15,
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±5, ±3, and ±1. All possible rational roots, with no common factors, are formed using all poss
quotients.

If a0 > 0, the first negative coefficient is preceded by k coefficients which are positive or zero, and G
is the largest of the absolute values of the negative coefficients, then each real root is less th

 (upper bound on the real roots). For a lower bound to the real roots, apply the criter
P(–x) = 0.

Example. P(x) = x5 + 3x4 – 2x3 – 12x + 2 = 0. Here a0 = 1, G = 12, and k = 2. Thus, the upper bound
for the real roots is 1 + ≈ 4.464. For the lower bound, P(–x) = –x5 + 3x4 + 2x3 + 12x + 2 = 0,
which is equivalent to x5 – 3x4 – 2x3 – 12x – 2 = 0. Here k = 1, G = 12, and a0 = 1. A lower bound is
–(1 + 12) = 13. Hence all real roots lie in –13 < x < 1 + 

A useful Descartes rule of signs for the number of positive or negative real roots is available 
observation for polynomials with real coefficients. The number of positive real roots is either eq
the number of sign changes, n, or is less than n by a positive even integer. The number of negative rea
roots is either equal to the number of sign changes, n, of P(–x), or is less than n by a positive even integer.

Example. P(x) = x5 – 3x3 – 2x2 + x – 1 = 0. There are three sign changes, so P(x) has either three or
one positive roots. Since P(–x) = –x5 + 3x3 – 2x2 – 1 = 0, there are either two or zero negative roots

The Graeffe Root-Squaring Technique

This is an iterative method for finding the roots of the algebraic equation

If the roots are r1, r2, r3, …, then one can write

and if one root is larger than all the others, say r1, then for large enough p all terms (other than 1) would
become negligible. Thus,

or

The Graeffe procedure provides an efficient way for computing Sp via a sequence of equations such th
the roots of each equation are the squares of the roots of the preceding equations in the seque
serves the purpose of ultimately obtaining an equation whose roots are so widely separated in ma
that they may be read approximately from the equation by inspection. The basic procedure is illu
for a polynomial of degree 4:

Rewrite this as

G ak / 0

122

122 .

  
f x a x a x a x ap p

p p( ) = + + + + =−
−0 1

1
1 0L
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and square both sides so that upon grouping

Because this involves only even powers of x, we may set y = x2 and rewrite it as

whose roots are the squares of the original equation. If we repeat this process again, the new e
has roots which are the fourth power, and so on. After p such operations, the roots are 2p (original roots).
If at any stage we write the coefficients of the unknown in sequence

then, to get the new sequence  write (times the symmetric coefficient) with re
to – (times the symmetric coefficient) – L (–1)i  Now if the roots are r1, r2, r3, and r4,
then a1/a0 = –  If the roots are all distinct and r1 is the
largest in magnitude, then eventually

And if r2 is the next largest in magnitude, then

And, in general  This procedure is easily generalized to polynomials of arbitrary de
and specialized to the case of multiple and complex roots.

Other methods include Bernoulli iteration, Bairstow iteration, and Lin iteration. These may be f
in the cited literature. In addition, the methods given below may be used for the numerical solu
polynomials.

General Methods for Nonlinear Equations in One Variable

Successive Substitutions

Let f(x) = 0 be the nonlinear equation to be solved. If this is rewritten as x = F(x), then an iterative
scheme can be set up in the form xk+1 = F(xk). To start the iteration, an initial guess must be obtain
graphically or otherwise. The convergence or divergence of the procedure depends upon the me
writing x = F(x), of which there will usually be several forms. A general rule to ensure converg
cannot be given. However, if a is a root of f(x) = 0, a necessary condition for convergence is that |F′(x)|
< 1 in that interval about a in which the iteration proceeds (this means the iteration cannot conv
unless |F′(x)| < 1, but it does not ensure convergence). This process is called first order because the error
in xk+1 is proportional to the first power of the error in xk.

Example.  f(x) = x3 – x – 1 = 0. A rough plot shows a real root of approximately 1.3. The equa
can be written in the form x = F(x) in several ways, such as x = x3 – 1, x = 1/(x2 – 1), and x = (1 +
x)1/3. In the first case, F′(x) = 3x2 = 5.07 at x = 1.3; in the second, F′(1.3) = 5.46; only in the third case

a x a a a x a a a a a x a a a x a0
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is F′(1.3) < 1. Hence, only the third iterative process has a chance to converge. This is illustra
the iteration table below.

Numerical Solution of Simultaneous Nonlinear Equations

The techniques illustrated here will be demonstrated for two simultaneous equations — f(x, y) = 0 and
g(x, y) = 0. They immediately generalize to more than two simultaneous equations.

The Method of Successive Substitutions

The two simultaneous equations can be written in various ways in equivalent forms

and the method of successive substitutions can be based on

Again, the procedure is of the first order and a necessary condition for convergence is

in the iteration neighborhood of the true solution.

The Newton-Raphson Procedure

Using the two simultaneous equation, start from an approximate, say (x0, y0), obtained graphically or
from a two-way table. Then, solve successively the linear equations

for ∆xk and ∆yk. Then, the k + 1 approximation is given from xk+1 = xk + ∆xk,yk+1 = yk + ∆yk. A modification
consists in solving the equations with (xk, yk) replaced by (x0, y0) (or another suitable pair later on in th
iteration) in the derivatives. This means the derivatives (and therefore the coefficients of ∆xk, ∆yk) are
independent of k. Hence, the results become

Step k x = x3 – 1 x = (1 + x)1/3

0 1.3 1.3 1.3
1 1.4493 1.197 1.32
2 0.9087 0.7150 1.3238
3 –5.737 –0.6345 1.3247
4 L L 1.3247

x
x

=
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1
12

x F x y

y G x y
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y G x y
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and xk+1 = ∆xk + xk, yk+1 = ∆yk + yk. Such an alteration of the basic technique reduces the rapidit
convergence.

Example

By plotting, one of the approximate roots is found to be x0 = 0.4, y0 = 0.3. At this point, there results
∂f/∂x = 8, ∂f/∂y = –0.4, ∂g/∂x = 0.4, and ∂g/∂y = –1. Hence,

and

The first few iteration steps are shown in the following table.

Methods of Perturbation

Let f(x) = 0 be the equation. In general, the iterative relation is

where the iteration begins with x0 as an initial approximation and αk is some functional.

The Newton-Raphson Procedure.This variant chooses αk = f ′(xk) where f ′ = df/dx and geometrically
consists of replacing the graph of f(x) by the tangent line at x = xk in each successive step. If f ′(x) and
f ″(x) have the same sign throughout an interval a ≤ x ≤ b containing the solution, with f(a) and f(b) of
opposite signs, then the process converges starting from any x0 in the interval a ≤ x ≤ b. The process is
second order.

Step k xk yk f(xk, yk) g(xk, yk)

0 0.4 0.3 –0.26 0.07
1 0.43673 0.24184 0.078 0.0175
2 0.42672 0.25573 –0.0170 –0.007
3 0.42925 0.24943 0.0077 0.0010
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∆
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An approximate root (obtained graphically) is 2.

The Method of False Position.This variant is commenced by finding x0 and x1 such that f(x0) and f(x1)
are of opposite signs. Then, α1 = slope of secant line joining [x0, f(x0)] and [x1, f(x1)] so that

In each following step, αk is the slope of the line joining [xk, f(xk)] to the most recently determined poin
where f(xj) has the opposite sign from that of f(xk). This method is of first order.

The Method of Wegstein

This is a variant of the method of successive substitutions which forces or accelerates convergen
iterative procedure xk+1 = F(xk) is revised by setting = F(xk) and then taking xk+1 = qxk + (1 – q) .
Wegstein found that suitably chosen qs are related to the basic process as follows:

At each step, q may be calculated to give a locally optimum value by setting

The Method of Continuity

In the case of n equations in n unknowns, when n is large, determining the approximate solution ma
involve considerable effort. In such a case, the method of continuity is admirably suited for use on
digital or analog computers. It consists basically of the introduction of an extra variable into n
equations

and replacing them by

Step k xk f(xk) f′(xk)

0 2 0.1667 0.4224
1 1.605 –0.002 0.2655
2 1.6125 –0.0005 L

Behavior of Successive 
Substitution Process

Range of
Optimum q

Oscillatory convergence 0 < q < 1/2
Oscillatory divergence 1/2 < q < 1
Monotonic convergence q < 0
Monotonic divergence 1 < q

f x x

f x

x

x
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where λ is introduced in such a way that the functions depend in a simple way upon λ and reduce to
an easily solvable system for λ = 0 and to the original equations for λ = 1. A system of ordinary
differential equations, with independent variable λ, is then constructed by differentiating with respe
to λ. There results

where x1, …, xn are considered as functions of λ. The equations are integrated, with initial condition
obtained with λ = 0, from λ = 0 to λ = 1. If the solution can be continued to λ = 1, the values of x1,
…, xn for λ = 1 will be a solution of the original equations. If the integration becomes infinite,
parameter λ must be introduced in a different fashion. Integration of the differential equations (w
are usually nonlinear in λ) may be accomplished on an analog computer or by digital means u
techniques described in a later section entitled “Numerical Solution of Ordinary Differential Equat

Example

Introduce λ as

For λ = 1, these reduce to the original equations, but, for λ = 0, they are the linear systems

which has the unique solution x = –1.4, y = –0.6. The differential equations in this case become

or
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Integrating in λ, with initial values x = –1.4 and y = –0.6 at λ = 0, from λ = 0 to λ = 1 gives the solution.

Interpolation and Finite Differences

The practicing engineer constantly finds it necessary to refer to tables as sources of inform
Consequently, interpolation, or that procedure of “reading between the lines of the table,” is a nec
topic in numerical analysis.

Linear Interpolation

If a function f(x) is approximately linear in a certain range, then the ratio [f(x1) – f(x0)]/(x1 – x0)= f[x0,
x1] is approximately independent of x0 and x1 in the range. The linear approximation to the function f(x),
x0 < x < x1, then leads to the interpolation formula

Divided Differences of Higher Order and Higher-Order Interpolation

The first-order divided difference f[x0, x1] was defined above. Divided differences of second and hig
order are defined iteratively by

and a convenient form for computational purposes is

for any k ≥ 0, where the ′ means the term (xj – xj) is omitted in the denominator. For example,
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If the accuracy afforded by a linear approximation is inadequate, a generally more accurate res
be based upon the assumption that f(x) may be approximated by a polynomial of degree 2 or high
over certain ranges. This assumptions leads to Newton’s fundamental interpolation formula with divided
differences:

where En(x) = error = [1/(n + 1)!]f(n–1) (ε)π(x) where min(x0, …, x) < ε < max(x0, x1,…, xn, x) and π(x)
= (x – x0)(x – x1)…(x – xn). In order to use this most effectively, one may first form a divided-differe
table. For example, for third-order interpolation, the difference table is

where each entry is given by taking the difference between diagonally adjacent entries to the left, 
by the abscissas corresponding to the ordinates intercepted by the diagonals passing through th
lated entry.

Example. Calculate by third-order interpolation the value of cosh 0.83 given cosh 0.60, cosh 
cosh 0.90, and cosh 1.10.

With n = 3, we have

which varies from the true value by 0.000 04.

Lagrange Interpolation Formulas

The Newton formulas are expressed in terms of divided differences. It is often useful to have interp
formulas expressed explicitly in terms of the ordinates involved. This is accomplished by the Lag
interpolation polynomial of degree n:

f x x x
f x

x x x x

f x

x x x x

f x

x x x x0 1 2
0

0 1 0 2

1

1 0 1 2

2

2 0 2 1

, ,[ ] =
( )

−( ) −( ) +
( )

−( ) −( ) +
( )

−( ) −( )

  

f x f x x x f x x x x x x f x x x

x x x x x x f x x x E xn n n

( ) ≈ ( ) + −( ) [ ] + −( ) −( ) [ ]
+ −( ) −( ) −( ) [ ] + ( )−

0 0 0 1 0 1 0 1 2

0 1 1 0 1

, , ,

, , ,L K

x

x

x

x

f x

f x

f x

f x

f x x

f x x

f x x

f x x x

f x x x
f x x x x

0

1

2

3

0

1

2

3

0 1

1 2

2 3

0 1 2

1 2 3
0 1 2 3

( )
( )
( )
( )

[ ]
[ ]
[ ]

[ ]
[ ] [ ]

,

,

,

, ,

, ,
, , ,

x

x

x

x

0

1

2

3

0 60

0 80

0 90

1 10

1 185 47

1 337 43

1 433 09

1 668 52

0 7598

0 9566

1 1772

0 6560

0 7353
0 1586

=
=
=
=

.

.

.

.

.

.

.

.

.

.

.

.

.
.

cosh . . . . . . .

. . . . .

0 83 1 185 47 0 23 0 7598 0 23 0 03 0 6560

0 23 0 03 0 07 0 1586 1 364 64

≈ + ( )( ) + ( )( )( )

+ ( )( ) −( )( ) =

y x
x

x x x
f x

j jj

n

j( ) = ( )
−( ) ′( ) ( )

=
∑ π

π0
© 1999 by CRC Press LLC



Mathematics 19-99
where

where (xj – xj) is the omitted factor. Thus,

Example. The interpolation polynomial of degree 3 is

Thus, directly from the data

we have as an interpolation polynomial y(x) for (x):

Other Difference Methods (Equally Spaced Ordinates)

Backward Differences.The backward differences denoted by

are useful for calculation near the end of tabulated data.

Central Differences.The central differences denoted by

x 0 1 3 4
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are useful for calculating at the interior points of tabulated data.
Also to be found in the literature are Gaussian, Stirling, Bessel, Everett, Comrie differences, and s

Inverse Interpolation

This is the process of finding the value of the independent variable or abscissa corresponding to
value of the function when the latter is between two tabulated values of the abscissa. One me
accomplishing this is to use Lagrange’s interpolation formula in the form

where x is expressed as a function of y. Other methods revolve about methods of iteration.

Numerical Differentiation

Numerical differentiation should be avoided wherever possible, particularly when data are empiric
subject to appreciable observation errors. Errors in data can affect numerical derivatives quite s
(i.e., differentiation is a roughening process). When such a calculation must be made, it is u
desirable first to smooth the data to a certain extent.

The Use of Interpolation Formulas

If the data are given over equidistant values of the independent variable x, an interpolation formula, such
as the Newton formula, may be used, and the resulting formula differentiated analytically. 
independent variable is not at equidistant values, then Lagrange’s formulas must be used. By d
tiating three- and five-point Lagrange interpolation formulas, the following differentiation formulas r
for equally spaced tabular points.

Three-point Formulas.Let x0, x1, and x2 be the three points

where the last term is an error term and minj xj < ε < maxj xj.

Five-point Formulas.Let x0, x1, x2, x3, and x4 be the five values of the equally spaced independ
variable and fj = f(xj).
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and the last term is again an error term.

Smoothing Techniques

These techniques involve the approximation of the tabular data by a least squares fit of the dat
some known functional form, usually a polynomial. In place of approximating f(x) by a single least
squares polynomial of degree n over the entire range of the tabulation, it is often desirable to rep
each tabulated value by the value taken on by a last squares polynomial of degree n relevant to a subrange
of 2M + 1 points centered, where possible, at the point for which the entry is to be modified. Thus
smoothed value replaces a tabulated value. Let fi = f(xi) be the tabular points and yj = smoothed values.
A first-degree least squares with three points would be

A first-degree least squares with five points would be

Thus, for example, if first-degree, five-point least squares are used, the central formula is used
values except the first two and the last two, where the off-center formulas are used. A third-degre
squares with seven points would be
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Additional smoothing formulas may be found in the references. After the data are smoothed, any
interpolation polynomials, or an appropriate least squares polynomial, may be fitted and the resu
to obtain the derivative.

Least Squares Method

Parabolic. For five evenly spaced neighboring abscissas labeled x–2, x–1, x0, x1, and x2, and their ordinates
f–2, f–1, f0, f1, and f2, assume a parabola is fit by least squares. There results for all interior points, e
the first and last two points of the data, the formula for the numerical derivative:

For the first two data points designated by 0 and h:

and for the last two given by α – h and α:

Quartic (Douglas-Avakian).A fourth-degree polynomial y = a + bx + cx2 + dx3 + ex4 is fitted to seven
adjacent equidistant points (spacing h) after a translation of coordinates has been made so that x = 0
corresponds to the central point of the seven. Thus, these may be called –3h, –2h, –h, 0, h, 2h, and 3h.
Let k = coefficient h for the seven points. This is, in –3h, k = –3. Then, the coefficients for the polynomia
are
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where all summations run from k = –3 to k = +3 and f(kh) = tabular value at kh. The slope of the
polynomial at x = 0 is dy/dx = b.

Numerical Integration

Numerical evaluation of the finite integral f(x) dx is carried out by a variety of methods. A few ar
given here.

Newton-Cotes Formulas (Equally Spaced Ordinates)

Trapezoidal Rule.This formula consists of subdividing the interval a ≤ x ≤ b into n subintervals a to a
+ h, a + h to a + 2h, …, and replacing the graph of f(x) by the result of joining the ends of adjacen
ordinates by line segments. If fj = f(xj) = f(a + jh), f0 = f(a), and fn = f(b), the integration formula is

where |En| = (nh3/12)|f ″(ε)| = [(b – a)3/12n2]|f ″(ε)|, a < ε < b. This procedure is not of high accuracy
However, if f ″(x) is continuous in a < x < b, the error goes to zero as l/n2, n → ∞.

Parabolic Rule (Simpson’s Rule).This procedure consists of subdividing the interval a < x < b into n/2
subintervals, each of length 2h, where n is an even integer. Using the notation as above the integra
formula is

where

This method approximates f(x) by a parabola on each subinterval. This rule is generally more accu
than the trapezoidal rule. It is the most widely used integration formula.

a
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Weddle’s Rule.This procedure consists of subdividing the integral a < x < b into n/6 subintervals, each
of length 6h, where n is a multiple of 6. Using the notation from the trapezoidal rule, there results

Note that the coefficients of fj follow the rule 1, 5, 1, 6, 1, 5, 2, 5, 1, 6, 1, 5, 2, 5, etc.… This proced
consists of approximately f(x) by a polynomial of degree 6 on each subinterval. Here,

Gaussian Integration Formulas (Unequally Spaced Abscissas)

These formulas are capable of yielding comparable accuracy with fewer ordinates than the equally
formulas. The ordinates are obtained by optimizing the distribution of the abscissas rather th
arbitrary choice. For the details of these formulas, Hildebrand (1956) is an excellent reference.

Two-Dimensional Formula

Formulas for two-way integration over a rectangle, circle, ellipse, and so forth, may be develope
double application of one-dimensional integration formulas. The two-dimensional generalization 
parabolic rule is given here. Consider the iterated integral f(x, y) dx dy. Subdivide c < x < d into
m (even) subintervals of length h = (d – c)/m, and a < y < b into n (even) subintervals of length k = (b
– a)/n. This gives a subdivision of the rectangle a ≤ y ≤ b and c ≤ x ≤ d into subrectangles. Let xj = c
+ jh, yj = a + jk, and fi,j = f(xi, yj). Then,

where

where ε1 and ε2 lie in c < x < d, and η1 and η2 lie in a < y < b.

Numerical Solution of Ordinary Differential Equations

A number of methods have been devised to solve ordinary differential equations numerically. The g
references contain some information. A numerical solution of a differential equation means a ta
values of the function y and its derivatives over only a limited part of the range of the indepen
variable. Every differential equation of order n can be rewritten as n first-order differential equations.
Therefore, the methods given below will be for first-order equations, and the generalization to si
neous systems will be developed later.

The Modified Euler Method

This method is simple and yields modest accuracy. If extreme accuracy is desired, a more sophi
method should be selected. Let the first-order differential equation be dy/dx = f(x, y) with the initial
condition (x0, y0) (i.e., y = y0 when x = x0). The procedure is as follows.
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Step 1. From the given initial conditions (x0, y0) compute = f(x0, y0) and = [∂f(x0, y0)/∂x] +
[∂f(x0, y0)/∂y] .  Then, determine y1 = y0 + h + (h2/2)  where h = subdivision of the independen
variable.

Step 2. Determine = f(x1, y1) where x1 = x0 + h. These prepare us for the following.

Predictor Steps.

Step 3. For n ≥ 1, calculate (yn+1)1 = yn–1 + 2h
Step 4. Calculate = f[xn+1, (yn+1)1].

Corrector Steps.

Step 5. Calculate (yn+1)2 = yn + (h/2)  where yn and without the subscripts are th
previous values obtained by this process (or by steps 1 and 2).

Step 6. = f[xn+1, (yn+1)2].
Step 7. Repeat the corrector steps 5 and 6 if necessary until the desired accuracy is produceyn+1,

Example. Consider the equation y′ = 2y2 + x with the initial conditions y0 = 1 when x0 = 0. Let h =
0.1. A few steps of the computation are illustrated.

and so forth. This procedure. may be programmed for a computer. A discussion of the truncatio
of this process may be found in Milne (1953).

Modified Adam’s Method

The procedure given here was developed retaining third differences. It can then be considered as
exact predictor-corrector method than the Euler method. The procedure is as follows for dy/dx = f(x, y)
and h = interval size.

Steps 1 and 2 are the same as in Euler method.

Predictor Steps.

Step 3. (yn+1)1 = yn + (h/24)  etc…, are calculated in
step 1.
Step 4. = f[xn+1, (yn+1)1].

Step

1

2

3

4

5

6

5 (repeat)

6 (repeat)

′y0 ′′y0

′y0 ′y0 ′′y0 ,
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Corrector Steps.

Step 5. (yn+1)2 = yn + (h/24)
Step 6.  = f[xn+1, (yn+1)2].
Step 7. Iterate steps 5 and 6 if necessary.

Runge-Kutta Methods

These methods are self-starting and are inherently stable. Kopal (1955) is a good reference f
derivation and discussion. Third- and fourth-order procedures are given below for dy/dx = f(x, y) and h
= interval size.

For third-order (error ≈ h4).

and

for all n ≥ 0, with initial condition (x0, y0).
For fourth-order (error ≈ h5),

and

Example. (Third-order) Let dy/dx = x – 2y, with initial condition y0 = 1 when x0 = 0, and let h = 0.1.
Clearly, xn = nh. To calculate y1, proceed as follows:
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Equations of Higher Order and Simultaneous Differential Equations

Any differential equation of second- or higher order can be reduced to a simultaneous system o
order equations by the introduction of auxiliary variables. Consider the following equations:

In the new variables x1 = x, x2 = y, x3 = z, x4 = dx1/dt, x5 = dx2/dt, and x6 = dx3/dt, the equations become

which is a system of the general form

where i = 1, 2, …, n. Such systems may be solved by simultaneous application of any of the a
numerical techniques. A Runge-Kutta method for

is given below. The fourth-order procedure is shown.
Starting at the initial conditions x0, y0, and t0, the next values x1 and y1 are computed via the equation

below (where ∆t = h, tj = h + tj–1):
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To continue the computation, replace t0, x0, and y0 in the above formulas by t1 = t0 + h, x1, and y1 just
calculated. Extension of this method to more than two equations follows precisely this same pa

Numerical Solution of Integral Equations

This section considers a method of numerically solving the Fredholm integral equation of the secon

The method discussed arises because a definite integral can be closely approximated by any o
numerical integration formulas (each of which arises by approximating the function by some polyn
over an interval). Thus, the definite integral can be replaced by an integration formula which be

where t1,…, tn are points of subdivision of the t axis, a ≤ t ≤ b, and the cs are coefficients whose values
depend upon the type of numerical integration formula used. Now, this must hold for all valuesx,
where a ≤ x ≤ b; so it must hold for x = t1, x = t2,…, x = tn. Substituting for x successively t1, t2,…, tn,
and setting u(ti) = ui and f(ti) = fi, we get n linear algebraic equations for the n unknowns u1,…, un. That is,

These uj may be solved for by the methods under the section entitled “Numerical Solution of L
Equations.”

Numerical Methods for Partial Differential Equations

The ultimate goal of numerical (discrete) methods for partial differential equations (PDEs) i
reduction of continuous systems (projections) to discrete systems that are suitable for high-spee
puter solutions. The user must be cautioned that the seeming elementary nature of the techniqu
pitfalls that can be seriously misleading. These approximations often lead to difficult mathem
questions of adequacy, accuracy, convergence, stability, and consistency. Convergence is concer
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the approach of the approximate numerical solution to the exact solution as the number of mes
increase indefinitely in some sense. Unless the numerical method can be shown to converge to t
solution, the chosen method is unsatisfactory.

Stability deals in general with error growth in the calculation. As stated before, any numerical m
involves truncation and round-off errors. These errors are not serious unless they grow as the com
proceeds (i.e., the method is unstable).

Finite Difference Methods

In these methods, the derivatives are replaced by various finite differences. The methods will be illu
for problems in two space dimensions (x, y) or (x, t) where t is timelike. Using subdivisions ∆x = h and
∆y = k with u(i h, jk) = ui,j, approximate ux|i,j = [(ui+1,j – ui,j)/h] + O(h) (forward difference), a first-order
[O(h)] method, or ux|i,j = [(ui+1,j – ui–1,j)/2h] + O(h2) (central difference), a second-order method. T
second derivative is usually approximated with the second-order method [uxx|i,j = [(ui+1,j – 2ui,j + ui–1,j)/h2]
+ O(h2)].

Example. Using second-order differences for uxx and uyy, the five-point difference equation (with h =
k) for Laplace’s equation uxx + uyy = 0 is ui,j =1/4[ui+1,j + ui–1,j + ui,j+1 + ui,j–1]. The accuracy is O(h2). This
model is called implicit because one must solve for the total number of unknowns at the unknown
points (i, j) in terms of the given boundary data. In this case, the system of equations is a linear s

Example. Using a forward-difference approximation for ut and a second-order approximation for uxx,
the diffusion equation ut = uxx is approximated by the explicit formula ui,j+1 = rui–1,j + (1 – 2r)ui,j + rui+1,j.
This classic result permits step-by-step advancement in the t direction beginning with the initial data a
t = 0 (j = 0) and guided by the boundary data. Here, the term r = ∆t/(∆x)2 = k/h2 is restricted to be less
than or equal to 1/2 for stability and the truncation error is O(k2 + kh2).

The Crank-Nicolson implicit formula which approximates the diffusion equation ut = uxx is 

The stability of this numerical method was analyzed by Crandall (Ames, 1993) where the λ, r stability
diagram is given.

Approximation of the time derivative in ut = uxx by a central difference leads to an always unsta
approximation — the useless approximation

which is a warning to be careful.
The foregoing method is symmetric with respect to the point (i, j), where the method is centered

Asymmetric methods have some computational advantages, so the Saul’yev method is described
1993). The algorithms (r = k/h2)

are used as in any one of the following options:

1. Use Saul’yev A only and proceed line-by-line in the t(j) direction, but always from the left
boundary on a line.

2. Use Saul’yev B only and proceed line-by-line in the t(j) direction, but always from the right
boundary to the left on a line.

− + +( ) − = −( ) + − −( )[ ] + −( )− + + + + − +r u r u r u r u r u r ui j i j i j i j i j i jλ λ λ λ λ λ1 1 1 1 1 1 11 2 1 1 2 1 1, , , , , ,
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3. Alternate from line to line by first using Saul’yev A and then B, or the reverse. This is relat
alternating direction methods.

4. Use Saul’yev A and Saul’yev B on the same line and average the results for the final ans
first, and then B). This is equivalent to introducing the dummy variables Pi,j and Qi,j such that

and

This averaging method has some computational advantage because of the possibility of truncatio
cancellation. As an alternative, one can retain the Pi,j and Qi,j from the previous step and replace Ui,j and
Ui+1,j by Pi,j and Pi+1,j, respectively, and Ui,j and Ui–1,j by Qi,j and Qi–1,j, respectively.

Weighted Residual Methods (WRMs)

To set the stage for the method of finite elements, we briefly describe the WRMs, which have s
variations — the interior, boundary, and mixed methods. Suppose the equation is Lu = f, where L is the
partial differential operator and f is a known function, of say x and y. The first step in WRM is to select
a class of known basis functions bi (e.g., trigonometric, Bessel, Legendre) to approximate u(x, y) as ~
Σ ai bi (x, y) = U(x, y, a). Often, the bi are selected so that U(x, y, a) satisfy the boundary conditions
This is essentially the interior method. If the bi, in U(x, y, a) are selected to satisfy the differentia
equations, but not the boundary conditions, the variant is called the boundary method. When neither the
equation nor the boundary conditions are satisfied, the method is said to be mixed. The least ingenuity
is required here. The usual method of choice is the interior method.

The second step is to select an optimal set of constants ai, i = 1,2, …, n, by using the residual RI(U)
= LU – f. This is done here for the interior method. In the boundary method, there are a set of bo
residual RB, and, in the mixed method. Both RI and RB. Using the spatial average (w, v) = ∫vwvdV, the
criterion for selecting the values of ai is the requirement that the n spatial averages

These represent n equations (linear if the operator L is linear and nonlinear otherwise) for the ai.
Particular WRMs differ because of the choice of the bjs. The most common follow.

1. Subdomain The domain V is divided into n smaller, not necessarily disjoint, subdomains Vj with
wj(x, y) = 1 if (x, y) is in Vj, and 0 if (x, y) is not in Vj.

2. Collocation Select n points Pj = (xj, yj) in V with wj(Pj) = δ(P – Pj), where ∫vφ(P)δ(P – Pj)dP =
φ(Pj) for all test functions φ(P) which vanish outside the compact set V. Thus, (wj, RE) = ∫vδ(P –
Pj)REdV = RE[U(Pj) ≡ 0 (i.e., the residual is set equal to zero at the n points Pj).

3. Least squares Here, the functional I(a) = dV, where a = (a1, …, an), is to be made stationary
with respect to the aj. Thus, 0 = ∂I/∂aj = 2∫vRE(∂RE/∂aj)dV, with j = 1, 2, …, n. The wj in this case
are ∂RE/∂aj.

4. Bubnov-Galerkin Choose wj(P) = bj(P). This is perhaps the best-known method.
5. Stationary Functional (Variational) Method With φ a variational integral (or other functional), se

∂φ[U]/∂aj = 0, where j = 1, …, n, to generate the n algebraic equations.

1

1
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Example. uxx + uyy = –2, with u = 0 on the boundaries of the square x = ±1, y = ±1. Select an interior
method with U = a1(1 – x2)(1 – y2) + a2x2y2(1 – x2)(1 – y2), whereupon the residual RE(U) = 2a1(2 – x2

– y2) + 2a2[(1 – 6x2)y2(1 – y2) + (1 – 6y2) – (1 – x2)] + 2. Collocating at (1/3, 1/3) and (2/3, 2/3) give
the two linear equations –32a1/9 + 32a2/243x2 + 2 = 0 and –20a1/9 – 400a2/243 + 2 = 0 for a1 and a2.

WRM methods can obviously be used as approximate methods. We have now set the stage ffinite
elements.

Finite Elements

The WRM methods are more general than the finite elements (FE) methods. FE methods require, i
addition, that the basis functions be finite elements (i.e., functions that are zero except on a sm
of the domain under consideration). A typical example of an often used basis is that of triangular ele
For a triangular element with Cartesian coordinates (x1, y1), (x2, y2), and (x3, y3), define natural coordinates
L1, L2, and L3 (Li, ↔ (xi, yi)) so that Li = Ai/A where

is the area of the triangle and

Clearly L1 + L2 + L3 = 1, and the Li are one at node i and zero at the other nodes. In terms of the Cartes
coordinates,

is the linear triangular element relation.
Tables of linear, quadratic, and cubic basis functions are given in the literature. Notice that wh

linear basis needs three nodes, the quadratic requires six and the cubic basis ten. Various modifi
such as the Hermite basis, are described in the literature. Triangular elements are useful in approx
irregular domains.

For rectangular elements, the chapeau functions are often used. Let us illustrate with an example. 
uxx + uyy = Q, 0 < x < 2, 0 < y < 2, u(x, 2) = 1, u(0, y) = 1, uy(x, 0) = 0, ux(2, y) = 0, and Q(x, y) =
Qwδ(x – 1)δ(y – 1),
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Using four equal rectangular elements, map the element I with vertices at (0, 0) (0, 1), (1, 1), and (1
0) into the local (canonical) coordinates (ξ, η), – 1 ≤ ξ ≤ 1, – 1 ≤ η ≤ 1, by means of x = 1/2(ξ + 1), y
= 1/2(η + 1). This mapping permits one to develop software that standardizes the treatment
elements. Converting to (ξ, η) coordinates, our problem becomes uξξ + uηη = 1/4Q, – 1 ≤ ξ ≤ 1, – 1 ≤
η ≤ 1, Q = Qwδ(ξ – 1)δ(η – 1).

First, a trial function (ξ, η) is defined as u(ξ, η) ≈ (ξ, η) = Ajφj(ξ, η) (in element I) where
the φj are the two-dimensional chapeau functions

Clearly φi take the value one at node i, provide a bilinear approximation, and are nonzero only o
elements adjacent to node i.

Second, the equation residual RE = ∇ 2  – 1/4Q is formed and a WRM procedure is selected 
formulate the algebraic equations for the Ai. This is indicated using the Galerkin method. Thus, f
element I, we have

Applying Green’s theorem, this result becomes

Using the same procedure in all four elements and recalling the property that the φi in each element are
nonzero only over elements adjacent to node i gives the following nine equations:

where the cξ and cη are the direction cosines of the appropriate element (e) boundary.

Method of Lines

The method of lines, when used on PDEs in two dimensions, reduces the PDE to a system of ord
differential equations (ODEs), usually by finite difference or finite element techniques. If the ori
problem is an initial value (boundary value) problem, then the resulting ODEs form an initial 
(boundary value) problem. These ODEs are solved by ODE numerical methods.
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Example. ut = uxx + u2, 0 < x < 1, 0 < t, with the initial value u(x, 0) = x, and boundary data u(0, t) =
0, u(1, t) = sin t. A discretization of the space variable (x) is introduced and the time variable is le
continuous. The approximation is  = (ui+1 – 2ui + ui–1)/h2 +  With h  = 1/5, the equations become

and u1(0) = 0.2, u2(0) = 0.4, u3(0) = 0.6, and u4(0) = 0.8.

Discrete and Fast Fourier Transforms

Let x(n) be a sequence that is nonzero only for a finite number of samples in the interval 0 ≤ n ≤ N –
1. The quantity

is called the discrete Fourier transform (DFT) of the sequence x(n). Its inverse (IDFT) is given by

Clearly, DFT and IDFT are finite sums and there are N frequency values. Also, X(k) is periodic in k
with period N.

Example. x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4

Thus,

and X(1) = x(0) + x(1)e–iπ/2 + x(2)e–iπ + x(3)e–i3π/2 = 1 – 2i – 3 + 4i = – 2 + 2i; X(2) = –2; X(3) = –2 – 2i.

DFT Properties

1. Linearity: If x3(n) = ax1(n) + bx2(n), then X3(k) = aX1(k) + bX2(k).
2. Symmetry: For x(n) real, Re[X(k)] = Re[X(N – k)], Im[(k)] = –Im[X(N – k)].
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3. Circular shift: By a circular shift of a sequence defined in the interval 0 ≤ n ≤ N – 1, we mean
that, as values fall off from one end of the sequence, they are appended to the other end. Denotin
this by x(n ⊕  m), we see that positive m means shift left and negative m means shift right. Thus,
x2(n) = x1(n ⊕  m) ⇔ X2(k) = X1(k)ei(2π/N)km.

4. Duality: x(n) ⇔ X(k) implies (1/N)X(n) ⇔ x(–k).
5. Z-transform relation: X(k) =  k = 0,1, …, N – 1.
6. Circular convolution: x3(n) =  x1(m)x2(n * m) = x1(n * ,)x2(,) where x2(n * m)

corresponds to a circular shift to the right for positive m.

One fast algorithm for calculating DFTs is the radix-2 fast Fourier transform developed by J. W. Cooley
and J. W. Tucker. Consider the two-point DFT X(k) = x(n)e–i(2π/2)nk, k = 0, 1. Clearly, X(k) =
x(0) + x(1)e–iπk. So, X(0) = x(0) + x(1) and X(1) = x(0) – x(1). This process can be extended to
DFTs of length N = 2r, where r is a positive integer. For N = 2r, decompose the N-point DFT into
two N/2-point DFTs. Then, decompose each N/2-point DFT into two N/4-point DFTs, and so on
until eventually we have N/2 two-point DFTs. Computing these as indicated above, we combine
them into N/4 four-point DFTs and then N/8 eight-point DFTs, and so on, until the DFT i
computed. The total number of DFT operations (for large N) is O(N2), and that of the FFT is O(N
log2 N), quite a saving for large N.

Figure 19.12.1

Figure 19.12.2 Figure 19.12.3

FIGURES 19.12.1 to 19.12.3 The “Oregonator” is a periodic chemical reaction describable by three nonlinear fi
order differential equations. The results (Figure 19.12.1) illustrate the periodic nature of the major chemical vers
time. Figure 19.12.2 shows the phase diagram of two of the reactants, and Figure 19.12.3 is the three-dimensional
phase diagram of all reactants. The numerical computation was done using a fourth-order Runge-Kuta metho
Mathematica by Waltraud Rufeger at the Georgia Institute of Technology.
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Software

Some available software is listed here.

General Packages

General software packages include Maple, Mathematica, and Matlab. All contain algorithms for ha
a large variety of both numerical and symbolic computations.

Special Packages for Linear Systems

In the IMSL Library, there are three complementary linear system packages of note.
LINPACK is a collection of programs concerned with direct methods for general (or full) symmetric

symmetric positive definite, triangular, and tridiagonal matrices. There are also programs for least s
problems, along with the QR algorithm for eigensystems and the singular value decompositi
rectangular matrices. The programs are intended to be completely machine independent, fully p
and run with good efficiency in most computing environments. The LINPACK User’s Guide by Don
et al. is the basic reference.

ITPACK is a modular set of programs for iterative methods. The package is oriented toward the
matrices that arise in the solution of PDEs and other applications. While the programs apply 
matrices, that is rarely profitable. Four basic iteration methods and two convergence acceleration m
are in the package. There is a Jacobi, SOR (with optimum relaxation parameter estimated), sym
SOR, and reduced system (red-black ordering) iteration, each with semi-iteration and conjugate g
acceleration. All parameters for these iterations are automatically estimated. The practical and the
background for ITPACK is found in Hagemen and Young (1981).

YALEPACK is a substantial collection of programs for sparse matrix computations.

Ordinary Differential Equations Packages

Also in IMSL, one finds such sophisticated software as DVERK, DGEAR, or DREBS for initial v
problems. For two-point boundary value problems, one finds DTPTB (use of DVERK and mu
shooting) or DVCPR.

Partial Differential Equations Packages

DISPL was developed and written at Argonne National Laboratory. DISPL is designed for non
second-order PDEs (parabolic, elliptic, hyperbolic (some cases), and parabolic-elliptic). Boundar
ditions of a general nature and material interfaces are allowed. The spatial dimension can be eit
or two and in Cartesian, cylindrical, or spherical (one dimension only) geometry. The PDEs are re
to ordinary DEs by Galerkin discretization of the spatial variables. The resulting ordinary DEs i
timelike variable are then solved by an ODE software package (such as GEAR). Software fe
include graphics capabilities, printed output, dump/restart/facilities, and free format input. DIS
intended to be an engineering and scientific tool and is not a finely tuned production code for a
set of problems. DISPL makes no effort to control the spatial discretization errors. It has been u
successfully solve a variety of problems in chemical transport, heat and mass transfer, pipe flow

PDELIB was developed and written at Los Alamos Scientific Laboratory. PDELIB is a librar
subroutines to support the numerical solution of evolution equations with a timelike variable an
or two space variables. The routines are grouped into a dozen independent modules according
function (i.e., accepting initial data, approximating spatial derivatives, advancing the solution in 
Each task is isolated in a distinct module. Within a module, the basic task is further refined into ge
purpose flexible lower-level routines. PDELIB can be understood and used at different levels. W
small period of time, a large class of problems can be solved by a novice. Moreover, it can pro
wide variety of outputs.

DSS/2 is a differential systems simulator developed at Lehigh University as a transportable num
method of lines (NMOL) code. See also LEANS.

FORSIM is designed for the automated solution of sets of implicitly coupled PDEs of the form
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The user specifies the φi in a simple FORTRAN subroutine. Finite difference formulas of any order m
be selected for the spatial discretization and the spatial grid need not be equidistant. The resulting
of time-dependent ODEs is solved by the method of lines.

SLDGL is a program package for the self-adaptive solution of nonlinear systems of elliptic
parabolic PDEs in up to three space dimensions. Variable step size and variable order are permit
discretization error is estimated and used for the determination of the optimum grid and optimum 
This is the most general of the codes described here (not for hyperbolic systems, of course). This 
has seen extensive use in Europe.

FIDISOL (finite difference solver) is a program package for nonlinear systems of two-or t
dimensional elliptic and parabolic systems in rectangular domains or in domains that can be trans
analytically to rectangular domains. This package is actually a redesign of parts of SLDGL, prim
for the solution of large problems on vector computers. It has been tested on the CYBER 205, 
IM, CRAY X-MP/22, and VP 200. The program vectorizes very well and uses the vector arithm
efficiently. In addition to the numerical solution, a reliable error estimate is computed.

CAVE is a program package for conduction analysis via eigenvalues for three-dimensional geom
using the method of lines. In many problems, much time is saved because only a few terms su

Many industrial and university computing services subscribe to the IMSL Software Library. Annou
ments of new software appear in Directions, a publication of IMSL. A brief description of some IMSL
packages applicable to PDEs and associated problems is now given. In addition to those packa
described, two additional software packages bear mention. The first of these, the ELLPACK s
solves elliptic problems in two dimensions with general domains and in three dimensions with
shaped domains. The system contains over 30 numerical methods modules, thereby providing a
of evaluating and comparing different methods for solving elliptic problems. ELLPACK has a sp
high-level language making it easy to use. New algorithms can be added or deleted from the 
with ease.

Second, TWODEPEP is IMSL’s general finite element system for two-dimensional elliptic, para
and eigenvalue problems. The Galerkin finite elements available are triangles with quadratic, cu
quartic basic functions, with one edge curved when adjacent to a curved boundary, according
isoparametric method. Nonlinear equatons are solved by Newton’s method, with the resulting
system solved directly by Gauss elimination. PDE/PROTRAN is also available. It uses trian
elements with piecewise polynomials of degree 2, 3, or 4 to solve quite general steady state
dependent, and eigenvalue problems in general two-dimensional regions. There is a simple use
Additional information may be obtained from IMSL. NASTRAN and STRUDL are two advanced fi
element computer systems available from a variety of sources. Another, UNAFEM, has been exte
used.
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19.13 Experimental Uncertainty Analysis

W.G. Steele and H.W. Coleman

Introduction

The goal of an experiment is to answer a question by measuring a specific variable, Xi, or by determining
a result, r, from a functional relationship among measured variables

(19.13.1)

In all experiments there is some error that prevents the measurement of the true value of each variable,
and therefore, prevents the determination of r true.

Uncertainty analysis is a technique that is used to estimate the interval about a measured variable or
a determined result within which the true value is thought to lie with a certain degree of confidence. As
discussed by Coleman and Steele (1989), uncertainty analysis is an extremely useful tool for all phases
of an experimental program from initial planning (general uncertainty analysis) to detailed de
debugging, test operation, and data analysis (detailed uncertainty analysis).

The application of uncertainty analysis in engineering has evolved considerably since the classic pap
of Kline and McClintock (1953). Developments in the field have been especially rapid and significant
over the past decade, with the methods formulated by Abernethy and co-workers (1985) that were
incorporated into ANSI/ASME Standards in (1984) and (1986) being superseded by the more rigo
approach presented in the International Organization for Standardization (ISO) Guide to the Expression
of Uncertainty in Measurement (1993). This guide, published in the name of ISO and six other inter
tional organizations, has in everything but name established a new international experimental uncertainty
standard.

The approach in the ISO Guide deals with “Type A” and “Type B” categories of uncertainties, not
the more traditional engineering categories of systematic (bias) and precision (random) uncertaint
and is of sufficient complexity that its application in normal engineering practice is unlikely. This issue
has been addressed by AGARD Working Group 15 on Quality Assessment for Wind Tunnel Testing, by
the Standards Subcommittee of the AIAA Ground Test Technical Committee, and by the ASME Com-
mittee PTC 19.1 that is revising the ANSI/ASME Standard (1986). The documents issued by two of
these groups (AGARD-AR-304, 1994) and (AIAA Standard S-071-1995, 1995) and in preparation
the ASME Committee present and discuss the additional assumptions necessary to achieve a less complex
“large sample” methodology that is consistent with the ISO Guide, that is applicable to the vast majority
of engineering testing, including most single-sample tests, and that retains the use of the tra
engineering concepts of systematic and precision uncertainties. The range of validity of this “large
sample” approximation has been presented by Steele et al. (1994) and by Coleman and Steele
The authors of this section are also preparing a second edition of Coleman and Steele (1989)
will incorporate the ISO Guide methodology and will illustrate its use in all aspects of engineer
experimentation.

In the following, the uncertainties of individual measured variables and of determined results ar
discussed. This section concludes with an overview of the use of uncertainty analysis in all phases 
an experimental program.

Uncertainty of a Measured Variable

For a measured variable, Xi, the total error is caused by both precision (random) and systematic (
errors. This relationship is shown in Figure 19.13.1. The possible measurement values of the variable
are scattered in a distribution (here assumed Gaussian) around the parent population mean, µi. The parent
population mean differs from (Xi,)true by an amount called the systematic (or bias) error, βi. The quantity

  
r r X X  X  Xi J= 1 2, , , , ,K K( )
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βi is the total fixed error that remains in the measurement process after all calibration correction
been made. In general, there will be several sources of bias error such as calibration standard
data acquisition errors, data reduction errors, and test technique errors. There is usually no dir
to measure these errors, so they must be estimated.

For each bias error source, (βi)k, the experimenter must estimate a systematic uncertainty (or 
limit), (B i)k, such that there is about a 95% confidence that (Bi)k ≥ |(βi)k|. Systematic uncertainties are
usually estimated from previous experience, calibration data, analytical models, and the applica
sound engineering judgment. For each variable, there will be a set, Ki, of elemental systematic uncer
tainties, (Bi)k, for the significant fixed error sources. The overall systematic uncertainty for variabXi

is determined from these estimates as

(19.13.2)

For a discussion on estimating systematic uncertainties (bias limits), see Coleman and Steele (
The estimate of the precision error for a variable is the sample standard deviation, or the estim

the error associated with the repeatability of a particular measurement. Unlike the systematic er
precision error varies from reading to reading. As the number of readings, Ni, of a particular variable
tends to infinity, the distribution of these readings becomes Gaussian.

The readings used to calculate the sample standard deviation for each variable must be tak
the time frame and conditions which cover the variation in the variable. For example, taking mu
samples of data as a function of time while holding all other conditions constant will identify the ra
variation associated with the measurement system and the unsteadiness of the test condition
sample standard deviation of the variable being measured is also expected to be representative
possible variations in the measurement, e.g., repeatability of test conditions, variation in test con
tion, then these additional error sources will have to be varied while the multiple data samples ar
to determine the standard deviation.

When the value of a variable is determined as the mean,  of Ni readings, then the sample standa
deviation of the mean is

(19.13.3) 

FIGURE 19.13.1 Errors in the measurement of variable Xi.
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(19.13.4)

It must be stressed that these Ni readings have to be taken over the appropriate range of variation
Xi as described above.

When only a single reading of a variable is available so that the value used for the variable is Xi, then
 previous readings, (XPi)k, must be used to find the standard deviation for the variable as

(19.13.5)

where

(19.13.6)

Another situation where previous readings of a variable are useful is when a small current s
size, Ni, is used to calculate the mean value,  of a variable. If a much larger set of previous re
for the same test conditions is available, then it can be used to calculate a more appropriate s
deviation for the variable (Steele et al., 1993) as

(19.13.7)

where Ni is the number of current readings averaged to determine  and  is computed from
previous readings using Equation (19.13.5). Typically, these larger data sets are taken in the early
down” or “debugging” phases of an experimental program.

For many engineering applications, the “large sample” approximation applies, and the uncertai
variable i (Xi or  is

(19.13.8)

where Si is found from the applicable Equation (19.13.3), (19.13.5) or (19.13.7). The interval Xi ± Ui or
 + Ui, as appropriate, should contain (Xi)true 95 times out of 100. If a small number of samples (Ni

or  < 10) is used to determine  or ,  then the “large sample” approximation may not 
and the methods in ISO (1993) or Coleman and Steele (1995) should be used to find Ui.

Uncertainty of a Result

Consider an experimental result that is determined for J measured variables as
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r r X X X Xi J= 1 2, , , , ,K K( )
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where some variables may be single readings and others may be mean values. A typical mec
engineering experiment would be the determination of the heat transfer in a heat exchanger as

(19.13.9)

where q is the heat rate,  is the flow rate, cp is the fluid specific heat, and To and Ti are the heated
fluid outlet and inlet temperatures, respectively. For the “large sample” approximation, Ur is found as

(19.13.10)

where Br is the systematic uncertainty of the result

(19.13.11)

with

(19.13.12)

and Sr is the standard deviation of the result

(19.13.13)

The term Bik in Equation (19.13.11) is the covariance of the systematic uncertainties. Whe
elemental systematic uncertainties for two separately measured variables are related, for instan
the transducers used to measure different variables are each calibrated against the same stan
systematic uncertainties are said to be correlated and the covariance of the systematic errors is 
The significance of correlated systematic uncertainties is that they can have the effect of either dec
or increasing the uncertainty in the result. Bik is determined by summing the products of the elemen
systematic uncertainties for variables i and k that arise from the same source and are therefore perfe
correlated (Brown et al., 1996) as

(19.13.14)

where L is the number of elemental systematic error sources that are common for measurements Xi and Xk.
If, for example,

(19.13.15)

and it is possible for portions of the systematic uncertainties B1 and B2 to arise from the same source(s
Equation (19.13.11) gives

(19.13.16)
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ṁ

U B Sr r r= + ( )2 2
2

B B Br i i

i

J

i k ik

k i

J

i

J
2 2

1 11

1

2= ( ) +
= = +=

−

∑ ∑∑θ θ θ

θ ∂
∂i

i

r

X
=

S Sr i i

i

J
2 2

1

= ( )
=

∑ θ

B B Bik i

L

k= ( ) ( )
=

∑ α
α

α
1

r r X X= ( )1 2,

B B B Br
2

1
2

1
2

2
2

2
2

1 2 122= + +θ θ θ θ
© 1999 by CRC Press LLC



19-122 Section 19

tic

tion of
rent
rrors in
have a
uire
tistical
iod are
lt

esult,

n

3.10)
 fewer
For a case in which the measurements of X1 and X2 are each influenced by four elemental systema
error sources and sources two and three are the same for both X1 and X2, Equation (19.13.2) gives

(19.13.17)

and

(19.13.18)

while Equation (19.13.14) gives

(19.13.19)

In the general case, there would be additional terms in the expression for the standard devia
the result, Sr , (Equation 19.13.13) to take into account the possibility of precision errors in diffe
variables being correlated. These terms have traditionally been neglected, although precision e
different variables caused by the same uncontrolled factor(s) are certainly possible and can 
substantial impact on the value of Sr (Hudson et al., 1996). In such cases, one would need to acq
sufficient data to allow a valid estimate of the precision covariance terms using standard sta
techniques (ISO, 1993). Note, however, that if multiple test results over an appropriate time per
available, these can be used to directly determine Sr . This value of the standard deviation of the resu
implicitly includes the correlated error effect.

If a test is performed so that M multiple sets of measurements (X1, X2, …, XJ)k at the same test
condition are obtained, then M results can be determined using Equation (19.13.1) and a mean r

 can be determined using

(19.13.20)

The standard deviation of the sample of M results, Sr , is calculated as

(19.13.21)

The uncertainty associated with the mean result,  for the “large sample” approximation is the

(19.13.22)

where

(19.13.23)

and where Br is given by Equation (19.13.11).
The “large sample” approximation for the uncertainty of a determined result (Equations (19.1

or (19.13.22)) applies for most engineering applications even when some of the variables have
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than 10 samples. A detailed discussion of the applicability of this approximation is given in Ste
al. (1994) and Coleman and Steele (1995).

The determination of Ur from Sr (or  and Br using the “large sample” approximation is calle
detailed uncertainty analysis (Coleman and Steele, 1989). The interval r (or  ± Ur (or  should
contain r true 95 times out of 100. As discussed in the next section, detailed uncertainty analysis
extremely useful tool in an experimental program. However, in the early stages of the program, it 
useful to estimate the overall uncertainty for each variable, Ui . The overall uncertainty of the result is
then determined as

(19.13.24)

This determination of Ur is called general uncertainty analysis.

Using Uncertainty Analysis in Experimentation

The first item that should be considered in any experimental program is “What question are we
to answer?” Another key item is how accurately do we need to know the answer, or what “deg
goodness” is required? With these two items specified, general uncertainty analysis can be use
planning phase of an experiment to evaluate the possible uncertainties from the various approac
might be used to answer the question being addressed. Critical measurements that will contribu
to the uncertainty of the result can also be identified.

Once past the planning, or preliminary design phase of the experiment, the effects of systemati
and precision errors are considered separately using the techniques of detailed uncertainty ana
the design phase of the experiment, estimates are made of the systematic and precision uncertaBr

and 2Sr , expected in the experimental result. These detailed design considerations guide the de
made during the construction phase of the experiment.

After the test is constructed, a debugging phase is required before production tests are begun
debugging phase, multiple tests are run and the precision uncertainty determined from them is co
with the 2Sr value estimated in the design phase. Also, a check is made to see if the test resu
and minus Ur compare favorably with known results for certain ranges of operation. If these check
not successful, then further test design, construction, and debugging is required.

Once the test operation is fully understood, the execution phase can begin. In this phase, 
checks can be used to monitor the operation of the test apparatus. In a balance check, a quan
as flow rate, is determined by different means and the difference in the two determinations, z, is compared
to the ideal value of zero. For the balance check to be satisfied, the quantity z must be less than or equa
to Uz.

Uncertainty analysis will of course play a key role in the data analysis and reporting phases
experiment. When the experimental results are reported, the uncertainties should be given alo
the systematic uncertainty, Br , the precision uncertainty, 2Sr , and the associated confidence level, usua
95%.
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19.14 Chaos

R. L. Kautz

Introduction

Since the time of Newton, the science of dynamics has provided quantitative descriptions of regular
motion, from a pendulum’s swing to a planet’s orbit, expressed in terms of differential equations.
However, the role of Newtonian mechanics has recently expanded with the realization that it can als
describe chaotic motion. In elementary terms, chaos can be defined as pseudorandom behavior observed
in the steady-state dynamics of a deterministic nonlinear system. How can motion be pseudorandom
or random according to statistical tests and yet be entirely predictable? This is just one of the paradoxes
of chaotic motion, which is globally stable but locally unstable, predictable in principle but not in
practice, and geometrically complex but derived from simple equations.

The strange nature of chaotic motion was first understood by Henri Poincaré, who established 
mathematical foundations of chaos in a treatise published in 1890 (Holmes, 1990). However, the practical
importance of chaos began to be widely appreciated only in the 1960s, beginning with the work of
Edward Lorenz (1963), a meteorologist who discovered chaos in a simple model for fluid convection.
Today, chaos is understood to explain a wide variety of apparently random natural phenomena, rang
from dripping faucets (Martien et al., 1985), to the flutter of a falling leaf (Tanabe and Kaneko, 1994),
to the irregular rotation of a moon of Saturn (Wisdom et al., 1984).

Although chaos is used purposely to provide an element of unpredictability in some toys and carnival
rides (Kautz and Huggard, 1994), it is important from an engineering point of view primarily as a
phenomenon to be avoided. Perhaps the simplest scenario arises when a nonlinear mechanism i
to achieve a desired effect, such as the synchronization of two oscillators. In many such cases, the degree
of nonlinearity must be chosen carefully: strong enough to ensure the desired effect but not so strong
that chaos results. In another scenario, an engineer might be required to deal with an intrinsically 
system. In this case, if the system can be modeled mathematically, then a small feedback signal ca
often be applied to eliminate the chaos (Ott et al., 1990). For example, low-energy feedback has been
used to suppress chaotic behavior in a thermal convection loop (Singer et al., 1991). As such consider-
ations suggest, chaos in rapidly becoming an important topic for engineers.

Flows, Attractors, and Liapunov Exponents

Dynamic systems can generally be described mathematically in terms of a set of differential equations
of the form.

(19.14.1)

where x = (x1, …, xN) is an N-dimensional vector called the state vector and the vector function F =
F1(x), …, FN(x)) defines how the state vector changes with time. In mechanics, the state variables xi are
typically the positions and velocities associated with the potential and kinetic energies of the system.
Because the state vector at times t > 0 depends only on the initial state vector x(0), the system defined
by Equation (19.14.1) is deterministic, and its motion is in principle exactly predictable.

The properties of a dynamic system are often visualized most readily in terms of trajectories x(t)
plotted in state space, where points are defined by the coordinates (x1, …, xN). As an example, consider
the motion of a damped pendulum defined by the normalized equation

(19.14.2)

d t dt tx F x( )  = ( )[ ]

d dt  d dt2 2θ θ ρ θ= −  −sin
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which expresses the angular acceleration d2θ/dt2 in terms of the gravitational torque – sin θ and a damping
torque – ρdθ/dt proportional to the angular velocity ν = dθ/dt. If we define the state vector as x = (x1,x2)
= (θ,ν), then Equation (19.14.2) can be written in the form of Equation (19.14.1) with F = (x2, – sin x1

– ρx2). In this case, the state space is two dimensional, and a typical trajectory is a spiral, as shown in
Figure 19.14.1 for the initial condition x(0) = (0,1). If additional trajectories, corresponding to ot
initial conditions, were plotted in Figure 19.14.1, we would obtain a set of interleaved spirals, all
converging on the point x = (0,0). Because the direction of a trajectory passing through a given point
is uniquely defined by Equation (19.14.1), state–space trajectories can never cross, and, by analogy with
the motion of a fluid, the set of all of trajectories is called a flow.

The tendency of a flow to converge toward a single point or other restricted subset of state spac
characteristic of dissipative systems like the damped pendulum. Such an asymptotic set, called
attracting set or attractor, can be a fixed point (for which F(x) = 0) as in Figure 19.14.1, but might also
be a periodic or chaotic trajectory. The convergence of neighboring trajectories is suggested in Figure
19.14.1 by a series of ellipses spaced at time intervals ∆t = 1.5 that track the flow of all trajectories
originating within the circle specified at t = 0. In general, the contraction of an infinitesimal state–space
volume V as it moves with the flow is given by

(19.14.3)

where ∇  · F = ∂Fi/xi is the divergence of F. For the damped pendulum, ∇  · F = ρ, so the area of
the ellipse shown in Figure 19.14.1 shrinks exponentially as V(t) = V(0) exp(–ρt). The contraction of
state–space volumes explains the existence of attractors in dissipative systems, but in conservative
systems such as the pendulum with ρ = 0, state–space volumes are preserved, and trajectories are instea
confined to constant-energy surfaces.

While the existence of chaotic behavior is generally difficult to predict, two essential conditions are
easily stated. First, the complex topology of a chaotic trajectory can exist only in a state–space of
dimension N ≥ 3. Thus, the pendulum defined by Equation (19.14.2) cannot be chaotic because N = 2
for this system. Second, a system must be nonlinear to exhibit chaotic behavior. Linear systems, for
which any linear combination c1xa(t) + c2xb(t) of two solutions xa(t) and xb(t) is also a solution, are
mathematically simple and amenable to analysis. In contrast, nonlinear systems are noted for their

FIGURE 19.14.1 The state-space trajectory x(t) for a pendulum with a damping coefficient ρ = 0.2 for the initial
condition x(0) = (0,1). The evolution of trajectories initialized in a small circle surrounding x = (0,1) is indicated
by the ellipses plotted at time intervals of ∆t = 1.5.

V V t− = ∇ ⋅1 ∂ ∂  F

Σ i
N
=1
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intractability. Thus, chaotic behavior is of necessity explored more frequently by numerical simulatio
than mathematical analysis, a fact that helps explain why the prevalence of chaos was discovered only
after the advent of efficient computation.

A useful criterion for the existence of chaos can be developed from an analysis of a trajectory’s local
stability. As sketched in Figure 19.14.2, the local stability of a trajectory x(t) is determined by considering
a neighboring trajectory (t) initiated by an infinitesimal deviation e(t0) from x(t) at time t0. The deviation
vector e(t) = (t) – x(t) at times t1 > t0 can be expressed in terms of the Jacobian matrix

(19.14.4)

which measures the change in state variable xi at time t1 due to a change in xj at time t0. From the
Jacobian’s definition, we have e(t1) = J(t1,t0)e(t0). Although the local stability of x(t) is determined simply
by whether deviations grow or decay in time, the analysis is complicated by the fact that deviation
vectors can also rotate, as suggested in Figure 19.14.2. Fortunately, an arbitrary deviation can be written
in terms of the eigenvectors e(i) of the Jacobian, defined by

(19.14.5)

which are simply scaled by the eigenvalues µi(t1,t0) without rotation. Thus, the N eigenvalues of the
Jacobian matrix provide complete information about the growth of deviations. Anticipating that the
asymptotic growth will be exponential in time, we define the Liapunov exponents,

(19.14.6)

Because any deviation can be broken into components that grow or decay asymptotically as exp(λ it),
the N exponents associated with a trajectory determine its local stability.

In dissipative systems, chaos can be defined as motion on an attractor for which one or more Liapunov
exponents are positive. Chaotic motion thus combines global stability with local instability in that mot
is confined to the attractor, generally a bounded region of state space, but small deviations grow
exponentially in time. This mixture of stability and instability in chaotic motion is evident in the behavior
of an infinitesimal deviation ellipsoid similar to the finite ellipse shown in Figure 19.14.1. Because some
λ i are positive, an ellipsoid centered on a chaotic trajectory will expand exponentially in some directions.
On the other hand, because state-space volumes always contract in dissipative systems and the asymptoti
volume of the ellipsoid scales as exp(Λt), where Λ = λ i, the sum of the negative exponents must
be greater in magnitude than the sum of the positive exponents. Thus, a deviation ellipsoid tracking a

FIGURE 19.14.2 A trajectory x(t) and a neighboring trajectory (t) plotted in state space from time t0 to t1. The
vectors e(t0) and e(t1) indicate the deviation of (t) from x(t) at times t0 and t1.

x̃
x̃

x̃
x̃

J t t  x t x tij i j1 0  1  0,( ) = ( )  ( )∂ ∂

J e  et t  t ti
i

i
1 0  1 0, ,( ) = ( )( )  ( )µ

λ
µ

i t

i t t

t t
=

( )
−→∞

lim
ln ,

1

1 0

1 0

Σ i
N
=1
© 1999 by CRC Press LLC



19-128 Section 19

-

to

ce

ed

otor
et

etic
chaotic trajectory expands in some directions while contracting in others. However, because an arbitrary
deviation almost always includes a component in a direction of expansion, nearly all trajectories neigh
boring a chaotic trajectory diverge exponentially.

According to our definition of chaos, neighboring trajectories must diverge exponentially and yet
remain on the attractor. How is this possible? Given that the attractor is confined to a bounded region
of state space, perpetual divergence can occur only for trajectories that differ infinitesimally. Finite
deviations grow exponentially at first but are limited by the bounds of the chaotic attractor and eventually
shrink again. The full picture can be understood by following the evolution of a small state-space volume
selected in the neighborhood of the chaotic attractor. Initially, the volume expands in some directions
and contracts in others. When the expansion becomes too great, however, the volume begins to fold
back on itself so that trajectories initially separated by the expansion are brought close together again.
As time passes, this stretching and folding is repeated over and over in a process that is often likened
to kneading bread or pulling taffy.

Because all neighboring volumes approach the attractor, the stretching and folding process leads 
an attracting set that is an infinitely complex filigree of interleaved surfaces. Thus, while the differential
equation that defines chaotic motion can be very simple, the resulting attractor is highly complex. Chaotic
attractors fall into a class of geometric objects called fractals, which are characterized by the presen
of structure at arbitrarily small scales and by a dimension that is generally fractional. While the existence
of objects with dimensions falling between those of a point and a line, a line and a surface, or a surface
and a volume may seem mysterious, fractional dimensions result when dimension is defined by how
much of an object is apparent at various scales of resolution. For the dynamical systems encompass
by Equation (19.14.1), the fractal dimension D of a chaotic attractor falls in the range of 2 < D < N
where N is the dimension of the state space. Thus, the dimension of a chaotic attractor is large enough
that trajectories can continually explore new territory within a bounded region of state space but small
enough that the attractor occupies no volume of the space.

Synchronous Motor

As an example of a system that exhibits chaos, we consider a simple model for a synchronous m
that might be used in a clock. As shown in Figure 19.14.3, the motor consists of a permanent-magn
rotor subjected to a uniform oscillatory magnetic field B sin t provided by the stator. In dimensionless
notation, its equation of motion is

(19.14.7)

where d2θ/dt2 is the angular acceleration of the rotor, –f sin t sin θ is the torque due to the interaction
of the rotor’s magnetic moment with the stator field, and –ρdθ/dt is a viscous damping torque. Although
Equation (19.14.7) is explicitly time dependent, it can be case in the form of Equation (19.14.1) by

FIGURE 19.14.3 A synchronous motor, consisting of a permanent magnet free to rotate in a uniform magn
field B sin t with an amplitude that varies sinusoidally in time.

d dt  f t  d dt2 2θ θ ρ θ= −  −sin sin
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defining the state vector as x = (x1,x2,x3) = (θ,ν,t), where ν = dθ/dt is the angular velocity, and by defining
the flow as F = (x2, –f sin x3 sin x1 – ρx2,1). The state space is thus three dimensional and large enough
to allow chaotic motion. Equation (19.14.7) is also nonlinear due to the term –f sin t sin θ, since sin(θa

+ θb) is not generally equal to sin θa + sin θb. Chaos in this system has been investigated by several
authors (Ballico et al., 1990).

By intent, the motor uses nonlinearity to synchronize the motion of the rotor with the oscill
stator field, so it evolves exactly once during each field oscillation. Although synchronization can occu
over a range of system parameters, proper operation requires that the drive amplitude f, which measures
the strength of the nonlinearity, be chosen large enough to produce the desired rotation but not so large
that chaos results. Calculating the motor’s dynamics for ρ = 0.2, we find that the rotor oscillates withou
rotating for f less than 0.40 and that the intended rotation is obtained for 0.40 < ρ < 1.87. The periodic
attractor corresponding to synchronized rotation is shown for f = 1 in Figure 19.14.4(a). Here the three-
dimensional state-space trajectory is projected onto the (x1,x2) or (θ,ν) plane, and a dot marks the poin
in the rotation cycle at which t = 0 modulo 2π. As Figure 19.14.4(a) indicates, the rotor advances by
exactly 2π during each drive cycle.

The utility of the motor hinges on the stability of the synchronous rotation pattern shown in Figure
19.14.4(a). This periodic pattern is the steady–state motion that develops after initial transients decay
and represents the final asymptotic trajectory resulting for initial conditions chosen from a wide a
state space. Because the flow approaches this attracting set from all neighboring points, the effect of a
perturbation that displaces the system from the attractor is short lived. This stability is reflected in the
Liapunov exponents of the attractor: λ1 = 0 and λ2 = λ3 = –0.100. The zero exponent is associated with
deviations coincident with the direction of the trajectory and is a feature common to all bounded attr

FIGURE 19.14.4 State-space trajectories projected onto the (x1,x2) or (θ,ν) plane, showing attractors of the syn-
chronous motor for ρ = 0.2 and two drive amplitudes, f = 1 and 3. Dots mark the state of the system at the beginn
of each drive cycle (t = 0 modulo 2π). The angles θ = π and –π are equivalent.
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other than fixed points. The zero exponent results because the system is neutrally stable with respe
offsets in the time coordinate. The exponents of –0.100 are associated with deviations transverse to the
trajectory and indicate that these deviations decay exponentially with a characteristic time of 1.6 drive
cycles. The negative exponents imply that the synchrony between the rotor and the field is maintained
in spite of noise or small variations in system parameters, as required of a clock motor.

For drive amplitudes greater than f = 1.87, the rotor generally does not advance by precisely 2π during
every drive cycle, and its motion is commonly chaotic. An example of chaotic behavior is illustrated for
f = 3 by the trajectory plotted in Figure 19.14.4(b) over an interval of 10 drive cycles. In this figure,
sequentially numbered dots mark he beginning of each drive cycle. When considered cycle by cycle,
the trajectory proves to be a haphazard sequence of oscillations, forward rotations, and reverse rotations.
Although we might suppose that this motion is just an initial transient, it is instead characteristic 
steady–state behavior of the motor. If extended, the trajectory continued with an apparently rand
mixture of oscillation and rotation, without approaching a repetitive cycle. The motion is aptly described
as chaotic.

The geometry of the chaotic attractor sampled in Figure 19.14.4(b) is revealed more fully in Figure
19.14.5. Here we plot points (θ,ν) recording the instantaneous angle and velocity of the rotor at the
beginning of each drive cycle for 100,000 successive cycles, Figure 19.14.5 displays the three-dimen-
sional attractor called a Poincaré section, at its intersection with the planes t = x3 = 0 modulo 2π,
corresponding to equivalent times in the drive cycle. For the periodic attractor of Figure 19.14.4(a), the
rotor returns to the same position and velocity at the beginning of each drive cycle, so its Poincaré
section is a single point, the dot in this figure. For chaotic motion, in contrast, we obtain the complex
swirl of points shown in Figure 19.14.5. If the system is initialized at a point far from the swirl, the
motion quickly converges to this attracting set. On succeeding drive cycles, the state of the system jump
from one part of the swirl to another in an apparently random fashion that continues indefinitely. As the
number of plotted points approaches infinity, the swirl becomes a cross section of the chaotic attracr.
Thus, Figure 19.14.5 approximates a slice through the infinite filigree of interleaved surfaces that compose
the attracting set. In this case, the fractal dimension of the attractor is 2.52 and that of its Po
section is 1.52.

FIGURE 19.14.5 Poincaré section of a chaotic attractor of the synchronous motor with ρ = 0.2 and f = 3, obtained
by plotting points (x1,x2) = (θ,ν) corresponding to the position and velocity of the rotor at the beginning of 100,000
successive drive cycles.
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The computed Liapunov exponents of the chaotic solution at ρ = 0.2 and f = 3 are λ1 = 0, λ2 = 0.213,
and λ3 = –0.413. As for the periodic solution, the zero exponent implies neutral stability associated wit
deviations directed along a given trajectory. The positive exponent, which signifies the presence of chao
is associated with deviations transverse to the given trajectory but tangent to the surface of the attracting
set in which it is embedded. The positive exponent implies that such deviations grow exponentially in
time and that neighboring trajectories on the chaotic attractor diverge exponentially, a property charac-
teristic of chaotic motion. The negative exponent is associated with deviations transverse to the surface
of the attractor and assures the exponential decay of displacements from the attracting set. Thus, the
Liapunov exponents reflect both the stability of the chaotic attractor and the instability of a given chaotic
trajectory with respect to neighboring trajectories.

One sequence of a positive Liapunov exponent is a practical limitation on our ability to predict th
future state of a chaotic system. This limitation is illustrated in Figure 19.14.6, where we plot a given
chaotic trajectory (solid line) and three perturbed trajectories (dashed lines) that result by offsetting the
initial phase of the given solution by various deviations e1(0). When the initial angular offset is e1(0) =
10–3 radian, the perturbed trajectory (short dash) closely tracks the given trajectory for about seven drive
cycles before the deviation become significant. After seven drive cycles, the perturbed trajectory is
virtually independent of the given trajectory, even though it is confined to the same attractor. Similarly,
initial offsets of 10–6 and 10–9 radian lead to perturbed trajectories (medium and long dash) that t
the given trajectory for about 12 and 17 drive cycles, respectively, before deviations become significant.
These results reflect the fact that small deviations grow exponentially and, in the present case, increa
on average by a factor of 10 every 1.7 drive cycles. If the position of the rotor is to be predicted wi
an accuracy of 10–1 radian after 20 drive cycles, its initial angle must be known to better than 10–13

radian, and the calculation must be carried out with at least 14 significant digits. If a similar prediction
is to be made over 40 drive cycles, then 25 significant digits are required. Thus, even though chaotic
motion is predictable in principle, the state of a chaotic system can be accurately predicted in p
for only a short time into the future. According to Lorenz (1993), this effect explains why weather
forecasts are of limited significance beyond a few days.

This pseudorandom nature of chaotic motion is illustrated in Figure 19.14.7 for the synchronous motor
by a plot of the net rotation during each of 100 successive drive cycles. Although this sequence of
rotations results from solving a deterministic equation, it is apparently random, jumping errat
between forward and reverse rotations of various magnitudes up to about 1.3 revolutions. The situation

FIGURE 19.14.6 Rotor angle as a function of time for chaotic trajectories of the synchronous motor with ρ = 0.2
and f = 3. Solid line shows a given trajectory and dashed lines show perturbed trajectories resulting from initia
angular deviations of e1(0) = 10–3 (short dash), 10–6 (medium dash), and 10–9 (long dash).
© 1999 by CRC Press LLC



19-132 Section 19

o
ic

s

n can

ear

and by

ctory
is similar to that of a digital random number generator, in which a deterministic algorithm is used t
produce a sequence of pseudorandom numbers. In fact, the similarity is not coincidental since chaot
processes often underlie such algorithms (Li, 1978). For the synchronous motor, statistical analysis
reveals almost no correlation between rotations separated by more than a few drive cycles. This statistical
independence is a result of the motor’s positive Liapunov exponent. Because neighboring trajectorie
diverge exponentially, a small region of the attractor can quickly expand to cover the entire attractor,
and a small range of rotations on one drive cycle can lead to almost any possible rotation a few cycles
later. Thus, there is little correlation between rotations separated by a few drive cycles, and on this time
scale the motor appears to select randomly between the possible rotations.

From an engineering point of view, the problem of chaotic behavior in the synchronous motor can
be solved simply by selecting a drive amplitude in the range of 0.40 < f < 1.87. Within this range, the
strength of the nonlinearity is large enough to produce synchronization but not so large as to produce
chaos. As this example suggests, it is important to recognize that erratic, apparently random motio
be an intrinsic property of a dynamic system and is not necessarily a product of external noise. Searching
a real motor for a source of noise to explain the behavior shown in Figure 19.14.7 would be wasted
effort since the cause is hidden in a noise-free differential equation. Clearly, chaotic motion is a possibility
that every engineer should understand.

Defining Terms

Attractor: A set of points in state space to which neighboring trajectories converge in the limit of large
time.

Chaos: Pseudorandom behavior observed in the steady–state dynamics of a deterministic nonlin
system.

Fractal: A geometric object characterized by the presence of structure at arbitrarily small scales 
a dimension that is generally fractional.

Liapunov exponent: One of N constants λ i that characterize the asymptotic exponential growth of
infinitesimal deviations from a trajectory in an N-dimensional state space. Various components
of a deviation grow or decay on average in proportion to exp(λ it).

Nonlinear system: A system of equations for which a linear combination of two solutions is not generally
a solution.

Poincaré section: A cross section of a state-space trajectory formed by the intersection of the traje
with a plane defined by a specified value of one state variable.

Pseudorandom: Random according to statistical tests but derived from a deterministic process.
State space: The space spanned by state vectors.

FIGURE 19.14.7 Net rotation of a synchronous motor during each of 100 successive drive cycles, illustrating
chaotic motion for ρ = 0.2 and f = 3. By definition, ∆θ = θ(2πn) – θ(2π(n – 1)) on the nth drive cycle.
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State vector: A vector x whose components are the variables, generally positions and velocities
define the time evolution of a dynamical system through an equation of the form  = F(x),
where F is a vector function.
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For Further Information

A good introduction to deterministic chaos for undergraduates is provided by Chaotic and Fractal
Dynamics: An Introduction for Applied Scientists and Engineers by Francis C. Moon. This book
presents numerous examples drawn from mechanical and electrical engineering.

Chaos in Dynamical Systems by Edward Ott provides a more rigorous introduction to chaotic dynam
at the graduate level.

Practical methods for experimental analysis and control of chaotic systems are presented in Coping with
Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems, a reprint volume edited
by Edward Ott, Tim Sauer, and James A. York.
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19.15 Fuzzy Sets and Fuzzy Logic

Dan M. Frangopol

Introduction

In the sixties, Zaheh (1965) introduced the concept of fuzzy sets. Since its inception more than 3
ago, the theory and methods of fuzzy sets have developed considerably. The demands for treating
situations in engineering, social sciences, and medicine, among other applications that are compex and
not crisp have been strong driving forces behind these developments.

The concept of the fuzzy set is a generalization of the concept of the ordinary (or crisp) 
introduces vagueness by eliminating the clear boundary, defined by the ordinary set theory, between full
nonmembers (i.e., grade of membership equals zero) and full members (i.e., grade of membershi
one). According to Zaheh (1965) a fuzzy set A, defined as a collection of elements (also called objec
x ∈  X, where X denotes the universal set (also called universe of discourse) and the symbol ∈  denotes
that the element x is a member of X, is characterized by a membership (also called charac
function µA(x) which associates each point in X a real member in the unit interval [0,1]. The value of
µA(x) at x represents the grade of membership of x in A. Larger values of µA(x) denote higher grades
of membership of x in A. For example, a fuzzy set representing the concept of control might assi
degree of membership of 0.0 for no control, 0.1 for weak control, 0.5 for moderate control, 0.9 for s
control, and 1.0 for full control. From this example, it is clear that the two-valued crisp set [i.e., no
control (grade of membership 0.0) and full control (grade of membership 1.0)] is a particular c
the general multivalued fuzzy set A in which µA(x) takes its values in the interval [0,1].

Problems in engineering could be very complex and involve various concepts of uncertainty. The use
of fuzzy sets in engineering has been quite extensive during this decade. The area of fuzzy control is
one of the most developed applications of fuzzy set theory in engineering (Klir and Folger, 1988). Fuzzy
controllers have been created for the control of robots, aircraft autopilots, and industrial processes, 
others. In Japan, for example, so-called “fuzzy electric appliances,” have gained great success from bot
technological and commercial points of view (Furuta, 1995). Efforts are underway to develop and
introduce fuzzy sets as a technical basis for solving various real-world engineering problems in which
the underlying information is complex and imprecise. In order to achieve this, a mathematical backgroun
in the theory of fuzzy sets is necessary. A brief summary of the fundamental mathematical aspects
the theory of fuzzy sets is presented herein.

Fundamental Notions

A fuzzy set A is represented by all its elements xi and associated grades of membership µA(xi) (Klir and
Folger, 1988).

(19.15.1)

where xi is an element of the fuzzy set, µA(xi) is its grade of membership in A, and the vertical bar is
employed to link the element with their grades of membership in A. Equation (19.15.1) shows a discrete
form of a fuzzy set. For a continuous fuzzy set, the membership function µA(x) is a continuous function
of x.

Figure 19.15.1 illustrates a discrete and a continuous fuzzy set. The larger membership grade max
(µA(xi)) represents the height of a fuzzy set.

If at least one element of the fuzzy set has a membership grade of 1.0, the fuzzy set is called norm
Figure 19.15.2 illustrates both a nonnormalized and a normalized fuzzy set.

The following properties of fuzzy sets, which are obvious extensions of the corresponding definitions
for ordinary (crisp) sets, are defined herein according to Zaheh (1965) and Klir and Folger (1988).

  
A x x x x x xA A  A n n= ( )  ( )  ( ){ }µ µ  µ1 1  2 2| ,  | , ,  |K
© 1999 by CRC Press LLC



Mathematics 19-135
Two fuzzy sets A and B are equal, A = B, if and only if µA(x) = µB(x) for every element x in X (see
Figure 19.15.3).

The complement of a fuzzy set A is a fuzzy set  defined as

(19.15.2)

Figure 19.15.4 shows both discrete and continuous fuzzy sets and their complements.

FIGURE 19.15.1 (a) Discrete and (b) continuous fuzzy set.

FIGURE 19.15.2 (a) Nonnormalized and (b) normalized fuzzy set.

A

µ µ
A Ax x( ) = − ( )1
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If the membership grade of each element of the universal set X in fuzzy set B is less than or equ
to its membership grade in fuzzy set A, then B is called a subset of A. This is denoted B ⊆  A. Figure
19.15.5 illustrates this situation.

The union of two fuzzy sets A and B with membership functions µA(x) and µB(x) is a fuzzy set C =
A ∪  B such that 

(19.15.3)

FIGURE 19.15.3 Two equal fuzzy sets, A = B.

FIGURE 19.15.4 (a) Discrete fuzzy set A, (b) complement  of fuzzy set A, (c) continuous fuzzy set B, and (d)
complement  of fuzzy set B.

A
B

µ µ µC A Bx x x( ) = ( )  ( )[ ]max ,
© 1999 by CRC Press LLC



Mathematics 19-137
for all x in X.
Conversely, the intersection of two fuzzy sets A and B with membership functions µA(x) and µB(x),

respectively, is a fuzzy set C = A ∩ B such that 

(19.15.4)

for all x in X.
Figure 19.15.6 illustrates two fuzzy sets A and B, the union set A ∪  B and the intersection set A ∩ B.

FIGURE 19.15.5 Fuzzy set A and its subset B.

FIGURE 19.15.6 (a) Two fuzzy sets, (b) union of fuzzy sets A ∪  B, and (c) intersection of fuzzy sets A ∩ B.

µ µ µC A Bx x x( ) = ( )  ( )[ ]min ,
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An empty fuzzy set A is a fuzzy set with a membership function µA(x) = 0 for all elements x in X
(see Figure 19.15.7).

Two fuzzy sets A and B with respective membership function µA(x) and µB(x) are disjoint if their
intersection is empty (see Figure 19.15.8).

An α-cut of a fuzzy set A is an ordinary (crisp) set Aα containing all elements that have a membership
grade in A greater or equal to α. Therefore,

(19.15.5)

From Figure 19.15.9, it is clear that α = 0.5, the α-cut of the fuzzy set A is the crisp set A0.5 = {x5, x6,
x7, x8} and for α = 0.8, the α-cut of the fuzzy set A is the crisp set A0.8 = {x7, x8}.

A fuzzy set is convex if and only if all of its α-cuts are convex for all α in the interval [0,1]. Figure
19.15.10 shows both a convex and a nonconvex fuzzy set.

A fuzzy number  is a normalized and convex fuzzy set of the real line whose membership functi
is piecewise continuous and for which it exists exactly one element with  = 1. As an example,
the real numbers close to 50 are shown by four membership functions in Figure 19.15.11.

The scalar cardinality of a fuzzy set A is the summation of membership grades of all elements o
in A. Therefore, 

(19.15.6)

FIGURE 19.15.7 Empty fuzzy set.

FIGURE 19.15.8 Disjoint fuzzy sets.

A x xAα µ α= ( ) ≥{ }|

Ñ
µ ˜ ( )

N
x0

A xA

x

= ( )∑µ
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For example, the scalar cardinality of the fuzzy set A in Figure 19.15.4(a) is 2.5. Obviously, an empty
fuzzy set has a scalar cardinality equal to zero. Also, the scalar cardinality of the fuzzy complement s
is equal to scalar cardinality of the original set. Therefore,

(19.15.7)

One of the basic concepts of fuzzy set theory is the extension principle. According to this principle
(Dubois and Prade, 1980), given (a) a function f mapping points in the ordinary set X to points in 
ordinary set Y, and (b) any fuzzy set A defined on X,

FIGURE 19.15.9 α-cut of a fuzzy set.

FIGURE 19.15.10 Convex and non-convex fuzzy set.

FIGURE 19.15.11 Membership functions of fuzzy sets of real numbers close to 50.

A A=
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then the fuzzy set B = f(A) is given as

(19.15.8)

If more than one element of the ordinary set X is mapped by f to the same element y in Y, then the
maximum of the membership grades in the fuzzy set A is considered as the membership grade of y in f(A

As an example, consider the fuzzy set in Figure 19.15.4(a), where x1 = –2, x2 = 2, x3 = 3, x4 = 4, and
x5 = 5. Therefore, A = {0.8|–2, 0.6|2, 0.2|3, 0.4|4, 0.5|5} and f(x) = x4. By using the extension principle,
we obtain

As shown by Klir and Folger (1988), degrees of association can be represented by membership gr
in a fuzzy relation. Such a relation can be considered a general case for a crisp relation.

Let P be a binary fuzzy relation between the two crisp sets X = {4, 8, 11} and Y = {4, 7} that
represents the relational concept “very close.” This relation can be expressed as:

or it can be represented by the two dimensional membership matrix

Fuzzy relations, especially binary relations, are important for many engineering applications.
The concepts of domain, range, and the inverse of a binary fuzzy relation are clearly defined in Zadeh

(1971), and Klir and Folger (1988).
The max-min composition operation for fuzzy relations is as follows (Zadeh, 1991; Klir and Folger,

1988):

(19.15.9)

for all x in X, y in Y, and z in Z, where the composition of the two binary relations P(X,Y) and Q(Y,Z)
is defined as follows:

(19.15.10)

As an example, consider the two binary relations

  
A x x x x x xA A  A n n= ( )  ( )  ( ){ }µ µ  µ1 1  2 2| ,  | , ,  |K

  
B f A  x f x  x f x  x f xA A  A n n= ( ) = ( ) ( ) ( ) ( )  ( ) ( ){ }µ µ  µ1 1  2 2| ,  | , ,  |K

f A( ) = ( ){ }
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The following matrix equations illustrate the max-min composition for these binary relations

Zadeh (1971) and Klir and Folger (1988), define also an alternative form of operation on 
relations, called max-product composition. It is denoted as P(X,Y) ⊗  Q(Y,Z) and is defined by

(19.15.11)

for all x in X, y in Y, and z in Z. The matrix equation

illustrates the max product composition for the pair of binary relations P(X,Y) and Q(Y,Z) previo
considered.

A crisp binary relation among the elements of a single set can be denoted by R(X,X). If this re
is reflexive, symmetric, and transistive, it is called an equivalence relation (Klir and Folger, 1988

A fuzzy binary relation S that is reflexive

(19.15.12)

symmetric

(19.15.13)

and transitive

(19.15.14)

is called a similarity relation (Zadeh, 1971). Equations (19.15.12), (19.15.13), and (19.15.14) ar
for all x,y,z in the domain of S. A similarity relation is a generalization of the notion of equivale
relation.

Fuzzy orderings play a very important role in decision-making in a fuzzy environment. Zadeh (
defines fuzzy ordering as a fuzzy relation which is transitive. Fuzzy partial ordering, fuzzy linear ord
fuzzy preordering, and fuzzy weak ordering are also mathematically defined by Zaheh (1971
Zimmermann (1991).

The notion of fuzzy relation equation, proposed by Sanchez (1976), is an important notion with v
applications. In the context of the max-min composition of two binary relations P(X,Y) and Q(Y,Z)
fuzzy relation equation is as follows

(19.15.15)
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where P and Q are matrices of membership functions µP(x,y) and µQ(y,z), respectively, and R is a matrix
whose elements are determined from Equation (19.15.9). The solution in this case in unique. However,
when R and one of the matrices P, Q are given, the solution is neither guaranteed to exit nor to be
unique (Klir and Folger, 1988).

Another important notion is the notion of fuzzy measure. It was introduced by Sugeno (1977). A
fuzzy measure is defined by a function which assigns to each crisp subset of X a number in t
interval [0,1]. This member represents the ambiguity associated with our belief that the crisp sub
X belongs to the subset A. For instance, suppose we are trying to diagnose a mechanical system
a failed component. In other terms, we are trying to assess whether this system belongs to th
systems with, say, safety problems with regard to failure, serviceability problems with respect t
deflections, and serviceability problems with respect to vibrations. Therefore, we might assign a low
value, say 0.2 to failure problems, 0.3 to deflection problems, and 0.8 to vibration problems. The
collection of these values constitutes a fuzzy measure of the state of the system.

Other measures including plausibility, belief, probability, and possibility measures are also used f
defining the ambiguity associated with several crisp defined alternatives. For an excellent treatment of
these measures and of the relationship among classes of fuzzy measures see Klir and Folger (1988).

Measures of fuzziness are used to indicate the degree of fuzziness of a fuzzy set (Zimmermann, 199
One of the most used measures of fuzziness is the entropy. This measure is defined (Zimmermann, 199
as

(19.15.16)

where h is a positive constant and S(α) is the Shannon function defined as
S(α) = –α lnα – (1 – α) ln(1 – α) for rational α. For the fuzzy set in Figure 19.15.4(a), defined as

the entropy is

Therefore, for h = 1, the entropy of the fuzzy set A is 3.0399.
The notion of linguistic variable, introduced by Zadeh (1973), is a fundamental notion in the devel-

opment of fuzzy logic and approximate reasoning. According to Zadeh (1973), linguistic variables are
“variables whose values are not members but words or sentences in a natural or artificial language. The
motivation for the use of words or sentences rather than numbers is that linguistic characterization
in general, less specific than numerical ones.” The main differences between fuzzy logic and classic
two-valued (e.g., true or false) or multivalued (e.g., true, false, and indeterminate) logic are that (a) fuz
logic can deal with fuzzy quantities (e.g., most, few, quite a few, many, almost all) which are in genera
represented by fuzzy numbers (see Figure 19.15.11), fuzzy predicates (e.g., expensive, rare), and fuzzy
modifiers (e.g., extremely, unlikely), and (b) the notions of truth and false are both allowed to be fuzzy
using fuzzy true/false values (e.g., very true, mostly false). As Klir and Folger (1988) stated, the ultimate
goal of fuzzy logic is to provide foundations for approximate reasoning. For a general background on
fuzzy logic and approximate reasoning and their applications to expert systems, the reader is referre
to Zadeh (1973, 1987), Kaufmann (1975), Negoita (1985), and Zimmermann (1991), among others.

Decision making in a fuzzy environment is an area of continuous growth in engineering and other
fields such as economics and medicine. Bellman and Zadeh (1970) define this process as a “decision
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process in which the goals and/or the constraints, but not necessarily the system under control, are fuz
in nature.”

According to Bellman and Zadeh (1970), a fuzzy goal G associated with a given set of alternatives
X = {x} is identified with a given fuzzy set G in X. For example, the goal associated with the stateme
“x should be in the vicinity of 50” might be represented by a fuzzy set whose membership funct
equal to one of the four membership functions shown in Figure 19.15.11. Similarly, a fuzzy constraint
C in X is also a fuzzy set in X, such as “x should be substantially larger than 20.”

Bellman and Zadeh (1970) define a fuzzy decision D as the confluence of goals and constraints
assuming, of course, that the goals and constraints conflict with one another. Situations in which the
goals and constraints are fuzzy sets in different spaces, multistage decision processes, stochastic sys
with implicitly defined termination time, and their associated optimal policies are also studied in Be
and Zadeh (1970).
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Further Information

The more than 5000 publications that exist in the field of fuzzy sets are widely scattered in many books,
journals, and conference proceedings. For newcomers, good introductions to the theory an
applications of fuzzy sets are presented in (a) Introduction to the Theory of Fuzzy Sets, Volume
I, Academic Press, New York, 1975, by Arnold Kaufmann; (b) Fuzzy Sets and Systems: Theo
and Applications, Academic Press, New York, 1980, by Didier Dubois and Henri Prade; (c) Fuzzy
Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs, NJ, 1988, by George Klir
and Tina Folger, and (d) Fuzzy Set Theory and Its Applications,, 2nd ed., Kluwer Academic
Publishers, Boston, 1991, by H.-J. Zimmerman, among others.
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The eighteen selected papers by Lotfi A. Zadeh grouped in Fuzzy Sets and Applications, John Wiley &
Sons, New York, 1987, edited by R. Yager, S. Ovchinnikov, R.M. Tong, and H.T. Nguyen
particularly helpful for understanding the developments of issues in fuzzy set and poss
theory. Also, the interview with Professor Zadeh published in this book illustrates the 
philosophy of the founder of fuzzy set theory.
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