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International System of Units (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weights and
Measures (CGPM) in 1960. It is a coherent system of units built from SéJ@ase unitspne for each

of the seven dimensionally independent base quantities: the meter, kilogram, second, ampere, kelvin,
mole, and candela, for the dimensions length, mass, time, electric current, thermodynamic temperature,
amount of substance, and luminous intensity, respectively. The definitions of the S| base units are given
below. TheSI derived unitsaare expressed as products of powers of the base units, analogous to the
corresponding relations between physical quantities but with numerical factors equal to unity.

In the International System there is only one Sl unit for each physical quantity. This is either the
appropriate Sl base unit itself or the appropriate Sl derived unit. However, any of the approved decimal
prefixes, calledsI prefixesmay be used to construct decimal multiples or submultiples of Sl units.

It is recommended that only Sl units be used in science and technology (with Sl prefixes where
appropriate). Where there are special reasons for making an exception to this rule, it is recommended
always to define the units used in terms of Sl units. This section is based on information supplied by
IUPAC.
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Mathematics 19-3

Definitions of SI Base Units

Meter: The meter is the length of path traveled by light in vacuum during a time interval of 1/299 792
458 of a second (17th CGPM, 1983).

Kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype of the
kilogram (3rd CGPM, 1901).

Second:The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th CGPM,
1967).

Ampere:The ampere is that constant current which, if maintained in two straight parallel conductors of
infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce
between these conductors a force equal *01®7 newton per meter of length (9th CGPM, 1958).

Kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic
temperature of the triple point of water (13th CGPM, 1967).

Mole: The mole is the amount of substance of a system which contains as many elementary entities as
there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities must
be specified and may be atoms, molecules, ions, electrons, or other particles, or specified groups of such
particles (14th CGPM, 1971). Examples of the use of the mole:

« 1 mol of H, contains about 6.022 10** H, molecules, or 12.044 10** H atoms.
¢ 1 mol of HgCl has a mass of 236.04 g.
¢ 1 mol of HgCl, has a mass of 472.08 g.
+ 1 mol of Hg>" has a mass of 401.18 g and a charge of 192.97 kC.
« 1 mol of Fg,, S has a mass of 82.88 g.
« 1 mol of e has a mass of 548.¢@ and a charge of —-96.49 kC.
« 1 mol of photons whose frequency ist1Bz has energy of about 39.90 kJ.
Candela:The candela is the luminous intensity, in a given direction, of a source that emits monochromatic

radiation of frequency 548 102 Hz and that has a radiant intensity in that direction of (1/683) watt
per steradian (16th CGPM, 1979).

Names and Symbols for the SI Base Units

Physical Quantity

Name of SI Unit  Symbol for SI Unit

Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

S| Derived Units with Special Names and Symbols

Name of Symbol for  Expression in Terms of S

Physical Quantity S| Unit S| Unit Base Units
Frequency hertz Hz st
Force newton N m - kg %
Pressure, stress pascal Pa N2t - kg - &
Energy, work, heat joule J N - m=mkg - &
Power, radiant flux watt w J7s=n?-kg- s
Electric charge coulomb C A-s
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19-4 Section 19

Name of Symbol for  Expression in Terms of SI
Physical Quantity S| Unit S| Unit Base Units

Electric potential, electromotive force volt \% JGnP-kg- s Al
Electric resistance ohm Q V- -Al=n? kg-s- A2
Electric conductance siemens S Ql=m2.- kgt -¢ -~
Electric capacitance farad F CNm?2. kgt & A
Magnetic flux density tesla T V.s f¥kg: s Al
Magnetic flux weber Wb V-s=mkg- g At
Inductance henry H V-A-s=m-kg s A2
Celsius temperatute degree Celsius °C K
Luminous flux lumen Im cd - sr
llluminance lux Ix cd-sr-m
Activity (radioactive) becquerel Bq 5
Absorbed dose (or radiation) gray Gy J g n? - 52
Dose equivalent (dose equivalent index) sievert Sv Jt-kg? - s?
Plane angle radian rad 1=m=m
Solid angle steradian sr 1 =mm?

2 For radial (circular) frequency and for angular velocity the unit te@ssimply s?, should be used, and
this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles
per second.

b The Celsius temperatufeis defined by the equation

g/°C = T/K = 237.15
The Sl unit of Celsius temperature interval is the degree Ceft€usyhich is equal to the kelvin, RC

should be treated as a single symbol, with no space betweérsidye and the letter C. (The symiS#,
and the symbofl, should no longer be used.)

Units in Use Together with the SI

These units are not part of the Sl, but it is recognized that they will continue to be used in appropriate
contexts. Sl prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar; mega-
electronvolt, MeV; and kilotonne, kt.

Physical Quantity Name of Unit Symbol for Unit Value in Sl Units
Time minute min 60 s
Time hour h 3600 s
Time day d 86 400 s
Plane angle degree ° (17180) rad
Plane angle minute ! (1v10 800) rad
Plane angle second " (Tv648 000) rad
Length angstrom A 10°m
Area barn b 168 v
Volume liter I, L dn? = 10° m?
Mass tonne t Mg = 10kg
Pressure bar bar 16 Pa=16N - m?
Energy electronvatt eV (=exV) = 1.60218x 101°J
Mass unified atomic mass Uit u (=my(12C)/12) = 1.66054x% 102" kg

2 The angstrom and the bar are approved by CIPM for “temporary use with S| units,” until CIPM
makes a further recommendation. However, they should not be introduced where they are not
used at present.

b The values of these units in terms of the corresponding S| units are not exact, since they depend
on the values of the physical constan(for the electronvolt) andl, (for the unified atomic mass
unit), which are determined by experiment.

¢ The unified atomic mass unit is also sometimes called the dalton, with symbol Da, although the
name and symbol have not been approved by CGPM.
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Mathematics

Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

Multiple or Multiple or
Submultiple  Prefix ~ Symbol  Submultiple  Prefix Symbol
10 exa E 10t deci d
108 peta P 16 centi c
1012 tera T 108 milli m
1 giga G 108 micro  p (Greek mu)
108 mega M 10° nano n
10 kilo k 1012 pico p
1 hecto h 16% femto  f
10 deca da 108 atto a
Conversion Factors — Metric to English
To Obtain Multiply By
Inches Centimeters 0.393 700 787 4
Feet Meters 3.280 839 895
Yards Meters 1.093 613 298
Miles Kilometers 0.621 371 192 2
Ounces Grams 3.527 396 19302
Pounds Kilograms 2.204 622 622
Gallons (U.S. liquid)  Liters 0.264 172 052 4
Fluid ounces Milliliters (cc) 3.381 402 2701072

Square inches
Square feet
Square yards
Cubic inches
Cubic feet
Cubic yards

Square centimeters

Square meters
Square meters
Milliliters (cc)
Cubic meters
Cubic meters

0.155 000 310 0
10.763 910 42
1.195 990 046
6.102 374 4069102
35.314 666 72
1.307 950 619

Conversion Factors — English to Metric

© 1999 by CRC Press LLC

To Obtain Multiply By 2
Microns Mils 25.4
Centimeters Inches 2.54
Meters Feet 0.3048
Meters Yards 0.9144
Kilometers Miles 1.609 344
Grams Ounces 28.349 523 13
Kilograms Pounds 0.453 592 37
Liters Gallons (U.S. liquid) 3.785 411 784
Millimeters (cc) Fluid ounces 29.573 529 56

Square centimeters
Square meters
Square meters
Milliliters (cc)
Cubic meters
Cubic meters

Square inches
Square feet
Square yards
Cubic inches
Cubic feet
Cubic yards

6.451 6
0.092 903 04
0.836 127 36
16.387 064
2.831 684 65902
0.764 554 858

a Boldface numbers are exact; others are given to ten significant

figures where so indicated by the multiplier factor.
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Conversion Factors — General

Section 19

To Obtain Multiply By 2
Atmospheres Feet of water @C} 2.950% 102
Atmospheres Inches of mercury @0 3.342x 102
Atmospheres Pounds per square inch 6.80402
Btu Foot-pounds 1.28% 10
Btu Joules 9.48x 10*
Cubic feet Cords 128
Degree (angle) Radians 57.2958
Ergs Foot-pounds 1.356 107
Feet Miles 5280
Feet of water @ ©C Atmospheres 33.90
Foot-pounds Horsepower-hours 1280
Foot-pounds Kilowatt-hours 2.65510°
Foot-pounds per minute Horsepower 3.30
Horsepower Foot-pounds per second 1.81803
Inches of mercury @°€C  Pounds per square inch 2.036
Joules Btu 1054.8
Joules Foot-pounds 1.355 82
Kilowatts Btu per minute 1.758 102
Kilowatts Foot-pounds per minute 2.2610°
Kilowatts Horsepower 0.745712
Knots Miles per hour 0.868 976 24
Miles Feet 1.894 104
Nautical miles Miles 0.868 976 24
Radians Degrees 1.746102
Square feet Acres 43 560
Watts Btu per minute 17.5796

a Boldface numbers are exact; others are given to ten significant figures where so
indicated by the multiplier factor.

Temperature Factors

°F = 9/5(°C) + 32

Fahrenheit temperature = 1.8(temperature in kelvins) - 459.67

°C = 5/9[(°F) - 32]

Celsius temperature = temperature in kelvins— 273.15

Fahrenheit temperature = 1.8(Celsius temperature) + 32
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Mathematics

Conversion of Temperatures

From To From To
t —32 Celsius Fahrenheit t. = (t, x 1.8) + 32
Fahrenheit ~ Celcius  t_ = F178 Kelvin T =t +273.15
Rankine Tg = (t, + 273.15)x 18
] t —32 Kelvin Celsius t.=Tx —273.15
Kelvin T =+ +273.15 Rankine To=T, x 1.8
Rankine Tg =t; + 459.67 Rankine  Fahrenheit t. = Ty — 459.67
Kelvin T
T, =-%
1.8

Physical Constants

19-7

General

Equatorial radius of the earth = 6378.388 km = 3963.34 miles (statute)

Polar radius of the earth = 6356.912 km = 3949.99 miles (statute)

1 degree of latitude at 46 69 miles

1 international nautical mile = 1.150 78 miles (statute) = 1852 m = 6076.115 ft
Mean density of the earth = 5.522 gfcm344.7 |b/ft

Constant of gravitation (6.6780.003)x 10® - cn? - g* - 52

Acceleration due to gravity at sea level, latitudé 4380.6194 cmfs= 32.1726 ft/3
Length of seconds pendulum at sea level, latitude=489.3575 cm = 39.1171 in.
1 knot (international) = 101.269 ft/min = 1.6878 ft/s = 1.1508 miles (statute)/h
1 micron = 16* cm

1 angstrom = 18 cm

Mass of hydrogen atom = (1.673 39.0031)x 102 g

Density of mercury at®@ = 13.5955 g/mL

Density of water at 3.9€ = 1.000 000 g/mL

Density, maximum, of water, at 3.98 = 0.999 973 g/ctn

Density of dry air at @C, 760 mm = 1.2929 g/L

Velocity of sound in dry air at°C = 331.36 m/s — 1087.1 ft/s

Velocity of light in vacuum = (2.997 925 0.000 002)< 10'° cm/s

Heat of fusion of water,°@ = 79.71 callg

Heat of vaporization of water, 180 = 539.55 cal/g

Electrochemical equivalent of silver 0.001 118 g/s international amp

Absolute wavelength of red cadmium light in air at@5760 mm pressure = 6438.4696 A
Wavelength of orange-red line of krypton 86 = 6057.802 A

1t Constants

1=3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511
1/t=0.31830 98861 83790 67153 77675 26745 02872 40689 19291 48091

T2 =9.8690 44010 89358 61883 44909 99876 15113 53136 99407 24079
log, 1= 1.14472 98858 49400 17414 34273 51353 05871 16472 94812 91531
logio T=0.49714 98726 94133 85435 12682 88290 89887 36516 78324 38044
log,, \/211 =0.39908 99341 79057 52478 25035 91507 69595 02099 34102 92128

Constants Involving e

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69996

1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458 11131 03177

€ = 7.38905 60989 30650 22723 04274 60575 00781 31803 15570 55185

M = log,, € = 0.43429 44819 03251 82765 11289 18916 60508 22943 97005 80367

1M = log, 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011 01488 62877
log;,, M = 9.63778 43113 00536 78912 29674 98645 — 10
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Numerical Constants

42 =1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695
/2 =1.25992 10498 94873 16476 72106 07278 22835 05702 51464 70151
log. 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026
log;, 2= 0.30102 99956 63981 19521 37388 94724 49302 67881 89881 46211
/3 =1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81039
/3 =1.44224 95703 07408 38232 16383 10780 10958 83918 69253 49935
log. 3 =1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275
log,q 3= 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070

Symbols and Terminology for Physical
and Chemical Quantities

Section 19

Name Symbol Definition S| Unit
Classical Mechanics
Mass m kg
Reduced mass 1] p = mymy/(my, + my,) kg
Density, mass density p p=mV kg - m?
Relative density d d=p/p® 1
Surface density PaPs p, = m/A kg - m?
Specific volume v v=V/Im=1p m? - kgt
Momentum p p =mv kg -m - g
Angular momentum, action L Lexp J-s
Moment of inertia 1, J l==mr? kg - n?
Force F F=dpdt=ma N
Torque, moment of a force T, (M) Trex F N-m
Energy E J
Potential energy E, V. ® E,=JF -ds J
Kinetic energy E, T, K E = (1/2) mv J
Work W, w W=[F -ds J
Hamilton function H H(g,p) = T(q,p + V(q) J
Lagrange function L L(0,q) = T(g,q) — V(q) J
Pressure p, P p=F/A Pa, N - n?
Surface tension Y, O y = dWdA N-m%J-mt
Weight GW, P G=mg N
Gravitational constant G F = Gmm,/r? N - n? - kg?
Normal stress (o] o =FI/A Pa
Shear stress T T=FA Pa
Linear strain, relative elongation g e e=Al/1 1
Modulus of elasticity, Young’s modulus E E=ole Pa
Shear strain Y y=»Axd 1
Shear modulus G G=1ly Pa
Volume strain, bulk strain 0 0 = AVIV, 1
Bulk modulus, compression modulus K K = Vy(dp/dV) Pa
Viscosity, dynamic viscosity n, 4 T,, = n(dv/d2 Pa-s
Fluidity (0] ®=1/n m - kg!-s
Kinematic viscosity v v =nlp m? - st
Friction coefficient u, () Frict = HFnom 1
Power P P = dwi/dt w
Sound energy flux P, P, P = dE/dt w
Acoustic factors
Reflection factor p p =P,/P, 1
Acoustic absorption factor a,, (@) a,=1-p 1
Transmission factor T T =P/P, 1
Dissipation factor 4] d=0a,—-T 1
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Name Symbol Definition S| Unit
Classical Mechanics
Electricity and Magnetism

Quantity of electricity, electric range Q C
Charge density p p=QIV cC-ms
Surface charge density o o=Q/A C.-m?
Electric potential V, @ V =dwW/dQ V,J-Ct
Electric potential difference U, AV, Ag u=Vv,-Vv, \%
Electromotive force E E =J(F/Q) - ds \Y
Electric field strength E E = &= —gradv V- nrt
Electric flux U] w=[D - -dA C
Electric displacement D D sE C-m?
Capacitance C=Q/U F, C- W
Permittivity € D =¢E F-m!
Permittivity of vacuum € € = M5 F.m!
Relative permittivity o € =¢elg, 1
Dielectric polarization P P =D —,E C.-m?

(dipole moment per volume)
Electric susceptibility Xe Xe=& -1 1
Electric dipole moment p, U P =Qr C-m
Electric current | | = dQ/dt A
Electric current density j, J I =Jj-dA A - m?
Magnetic flux density, magnetic B F=QvxB T

induction
Magnetic flux (0] ®=[B-dA Wb
Magnetic field strength H B gH A - M1
Permeability 1} B =pH N-A2H - m?
Permeability of vacuum Ho H.-m?!
Relative permeability e My = WU 1
Magnetization M M=B/pg,—H A mt

(magnetic dipole moment per volume)
Magnetic susceptibility X Ky (X X=H -1 1
Molar magnetic susceptibility Xm Xm = VX mé - mot?
Magnetic dipole moment ny E,=-m-B A-mJ T
Electrical resistance R R=UI/ Q
Conductance G G=1IR S
Loss angle 4] o= (M2) +@ — @, I, rad
Reactance X X = (/) sind Q
Impedance (complex impedance) Z Z=R+iX Q
Admittance (complex admittance) Y Y=Ilz S
Susceptance B Y=G+iB S
Resistivity p p =EJj Q-m
Conductivity K, Y, O K =Ilp S-mt
Self-inductance L E = —-L(dlI/dt) H
Mutual inductance M, Ly, E, = L,(dl,/dt) H
Magnetic vector potential A B £ xA Wb - m?
Poynting vector S S=KEH W . m?

Electromagnetic Radiation
Wavelength A m
Speed of light
In vacuum G m - st
In a medium c c=cyn m - st

Wavenumber in vacuum v V =v/cy = l/nA m-t
Wavenumber (in a medium) (o] g =1 m?
Frequency v v =c/A Hz
Circular frequency, pulsatance w wW=21v strad - s
Refractive index n n=cyc 1
Planck constant h J-s

© 1999 by CRC Press LLC
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Section 19
Name Symbol Definition S| Unit
Classical Mechanics
Planck constantf2 h h =h2n J-s
Radiant energy QW J
Radiant energy density p, W p=QNV J-ms
Spectral radiant energy density

In terms of frequency Py, W, p, = dp/dv J-md. Hz!

In terms of wavenumber P, W, p, = dp/dv J-m?

In terms of wavelength Prr Wy p, = dp/dA J.m
Einstein transition probabilities

Spontaneous emission A dN/dt = -A N, s?

Stimulated emission B dNydt = —-p, (V) s - kgt

xByN,

Stimulated absorption Bom dNJdt = p,(V,,) BuelN, S - kg?
Radiant power, radiant energy per time®, P ® = dQ/dt W
Radiant intensity | | =dd/dQ W - srt
Radiant excitance (emitted radiant flux)M M = dd/dA e W - mr?
Irradiance (radiant flux received) E, (1) E = d®/dA W - mr?
Emittance € € = M/IMy, 1
Stefan-Boltzmann constant (o] M,, = oT* W . m?. K*
First radiation constant c ¢, = 2mhc? W - m?
Second radiation constant C, ¢, = hgyk K-m
Transmittance, transmission factor T, T T=d,/D, 1
Absorptance, absorption factor [of o =P, /D, 1
Reflectance, reflection factor p P =P /P,y 1
(Decadic) absorbance A A=lg(l -y 1
Napierian absorbance B B=In(1-a)) 1
Absorption coefficient

(Linear) decadic a, K a=Al mt

(Linear) napierian a o =Bl mt

Molar (decadic) € € =al/c=All m? - mot?

Molar napierian K K = alc = Blcl m? - mot?
Absorption index k k=al4n v |
Complex refractive index n n a+ik 1
Molar refraction R, R (n*-1) m? - mot?!

- (nz +2) m
Angle of optical rotation [of 1, rad
Solid State
Lattice vector R, R m
Fundamental translation vectors for thea;; a,; &, a;, R =na + na, + Ny m
crystal lattice b; c
(Circular) reciprocal lattice vector G G - R Tth m?
(Circular) fundamental translation b;; b,; b, a - h = 2md, mt
vectors for the reciprocal lattice a;b;c
Lattice plane spacing d m
Bragg angle 0 nA =2d sinB@ 1, rad
Order of reflection n
Order parameters

Short range o 1

Long range S 1
Burgers vector b m
Particle position vectort r,R m
Equilibrium position vector of an ion R m
Displacement vector of an ion u u=Rg§R m
Debye-Waller factor B, D 1
Debye circular wavenumber (o' mt
Debye circular frequency Wp st
Griineisen parameter AR y = aVIikC, 1
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Name Symbol Definition S| Unit

Classical Mechanics

Madelung constant a, M AN z+z-¢ 1
coul 4T[EOR0

Density of states Ne Ne = dN(E)/dE Jt-ms
(Spectral) density of vibrational modesN,, g N, = dN(w)/dw s-m
Resistivity tensor Pi E=p-j Q-m
Conductivity tensor Oy o=p?t S-m
Thermal conductivity tensor Aic Jy=-A - gradT W .t K1
Residual resistivity Pr Q- m
Relaxation time T T =1 S
Lorenz coefficient L L =MNoT V2. K?
Hall coefficient A, Ry E =pj+RyB %)) mé. Ct
Thermoelectric force E \%
Peltier coefficient n \Y
Thomson coefficient o, (T VK-t
Work function [0} P=E, —E J
Number density, number concentrationn, (p) m3
Gap energy By J
Donor ionization energy Ey J
Acceptor ionization energy E, J
Fermi energy Er & J
Circular wave vector, propagation k, g k = 207\ mt

vector
Bloch function u(r) W(r) = u(r) exptk - r) s’
Charge density of electrons p p(r) = —ew (NW(r) C-ms
Effective mass m kg
Mobility m M = Vgl E m? - V1. st
Mobility ratio b b=u/u, 1
Diffusion coefficient D dN/dt= -DA(dn/d® m? - st
Diffusion length L L= /Dt m
Characteristic (Weiss) temperature o @, K
Curie temperature g K
Neel temperature N K
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Elementary Algebra and Geometry

Fundamental Properties (Real Numbers)

atb=b+a Commutative law for addition
(a+b)+c=a+(p+c Associative law for addition
a+0=0+a Identity law for addition
a+(-a =(-a+a=0 Inverse law for addition
a(bc) = (ab)c Associative law for multiplication
o _ Ol _ T
aEbD O l,az0 Inverse law for multiplication
@1) =)@ =a Identity law for multiplication
ab =ba Commutative law for multiplication
a(b +c) =ab+ac Distributive law

Division by zero is not defined.

Exponents

For integersm andn,

a"a" =a
a"/a"=a""
(an)m _gm

(ab)™ =a™™

Fractional Exponents
ara = (al/q)p

wherea’ is the positivegth root ofa if a > 0 and the negativath root ofa if a is negative andgj is
odd. Accordingly, the five rules of exponents given above (for integers) are also val@hidn are
fractions, providedh andb are positive.

Irrational Exponents

If an exponent is irrational (e.g»2),  the quantity, sucrasb, is the limit of the seq@iéree?,
a4

Operations with Zero

Logarithms
If X, y,andb are positiveb # 1,

© 1999 by CRC Press LLC



Mathematics 19-13

log, (xy) = log, x +10g, y
log, (x/y) = log, x - log, y
log, x" = plog, x

log, (I/x) = ~log, x
log,b=1

log,1=0 Note: b'*%* = x
Change of Base (a # 1)
log, x = log, xlog, a

Factorials

The factorial of a positive integeris the product of all the positive integers less than or equal to the
integern and is denoted!. Thus,

Factorial O is defined: O! = 1.
Stirling’s Approximation

Iim(n/e")nv‘zm =n

N— o

Binomial Theorem
For positive integen
Y yroyz NZDINZ2) jaga oy gyt 4y

(x+y)" =x"+ xly + W2

Factors and Expansion

QO
+
O
-
w
1
Q
w
+
w
Q
N
lon
+
g
N
+
O
w
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Progression

An arithmetic pogressionis a sequence in which theffdrence betweenng term and the preceding
term is a constantl):

aa+d,a+2d,...,a+(n-1)d
If the last term is denotdd[= a + (n — I)d], then the sum is

s:g(a+l)

A geometric pogressionis a sequence in which the ratio offaerm to the preceding term is a constant
r. Thus for n terms,

The sum is

Complex Numbers

A complkex number is an ordered pair of real numbersh).

Equality:  (a,b)=(c,d)ifandonlyifa=candb=d
Addition:  (a,b)+(c,d)=(a+cb+d)
Multiplication:  (a,b)(c,d) = (ac - bd,ad + bc)

The first elementq, b) is called thereal part, the second ¢imaginary part An alternaive notation

for (a, b is a + bi, wherei2 = (— 1, 0), and = (0, 1) or O +ilis written for this comgk number as a
convenience With this understanding, belaves as a numbethat is, (2 - 34 +i) =8+ 2 — 14 —

3i2 = 11 — 10. The conjugate of a + bi isa — bi, and the product of a comgal number and its
conjugate is2? + b2 Thus quotientsare computed by multiplying numerator and denominator by the
conjugate of the denominata@s illustrated belv:

2+3 _(4-2i)(2+3) _14+8 _ 7+4i
4+2i (4-2)(4+2)) 20 10

Polar Form
The compéx numberx + iy may be represented by a plametor with components andy:

x +iy =r(cosB +ising)

(See Figure 19.1.1 Then, gven twvo compéx numbers z=T1,(cos 0, +i sinB;) andz, = 1,(cos B, +i
sin B,), the product and quotient are:
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Product: 72z, = rlrz[cos(e1 + 92) + isin(el + 62)]
Quotient: z/z, = (rl/rz)[cos(el —92) +isin(e1 —62)]
Powers: 2" = [r(cos® +ising)]" = r"[cosng +isinn6)
Roots: 2" = [r(cos® +isin)|""
_ Ot KBE0 . B8+K(B6O
B % 7 n B
k=0,1,2 ..., n-1
Y
P(x,vy)
r
8 x
0

FIGURE 19.1.1 Polar form of complex number.

Permutations

A permutation is an ordered arrangement (sequence) of all or part of a set of objects. The number of
permutations ofi objects takem at a time is

p(nr)=n(n-1)(n-2)---(n-r +1)

A permutation of positive integers is “even” or “odd” if the total number of inversions is an even integer
or an odd integer, respectively. Inversions are counted relative to each jnitegee permutation by
counting the number of integers that follpvand are less than These are summed to give the total
number of inversions. For example, the permutation 4132 has four inversions: three relative to 4 and
one relative to 3. This permutation is therefore even.

Combinations

A combination is a selection of one or more objects from among a set of objects regardless of order.
The number of combinations afdifferent objects takenat a time is

P(n,r) n!
r! ri(n-r)

C(nr) =
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Algebraic Equations

Quadratic
If a2+ bx+c =0, anda # 0, then roots are

= -b++b?-4ac
2a

Cubic
To solve x? + bx2 + cx +d = 0, letx =y —b/3. Then the reduced cubids obtained:

y+py+q=0

wherep = ¢ — (1/3p? andq = d — (1/3)c + (2/27)°. Solutions of the original cubic are then in terms
of the reduced curbic rooss, Y., Vs

=y, -(13b  x=y,-(13)p  x,=y,—~(V3)b
The three roots of the reduced cubic are
y, = (A)" +(B)"
Y, = W(A)* + WA (B)*
y; = W2 (A +w(B)"

where

A=-}q+. (127)p’ + 0’
B=-4q-(127)p° +3¢?

_ -1+ i\’/g
2

_-1-iy3
2

w , W2

When (1/27p3 + (1/4)9? is regaive, A is compéx; in this cas A should beexpressed in trigonometric
form: A=r(cos O +i sinB) where0 is a first or second quadrant angleqgas negaive or positve. The
three roots of the reduced cubic are

y, = 2(r)"* cog(6/3)

_ e 0
y, =2(r)"” cos, +120°)
_ e .0
y3 - 2(r)l/3 COS[E + 240 I:l

Geometry

Figures 19.1.2 to 19.1.Xe a collection of common geometiigures Area (), volume ), and other
measurable features are indicated.
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h
b FIGURE 19.1.2 RectangleA = bh.
b FIGURE 19.1.3 ParallelogramA = bh.
/\
i
ih
]
]
!
b FIGURE 19.1.4 Triangle.A = 1/2bh.

]

b FIGURE 19.1.5 Trapezoid A = 1/2 @ + b)h.
FIGURE 19.1.6 Circle. A = iR?; circumference =R,
arc lengthS= R 6 (6 in radians).
‘
A FIGURE 19.1.7 Sector of CircleAq o= 1/2R20; Ajymen= 1/2R2 (6 — sinB).

FIGURE 19.1.8 Regular polygon ofi sides.A = (n/4)b? ctn(rvn);
R = (b/2) cscfun).

Table of Derivatives

In the following tablea andn are constants is the base of the natural logarithms, arghdv denote
functions ofx.

Additional Relations with Derivatives

%J’; f(x) dx = f(t) %J:af(x) dx = - f(t)
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FIGURE 19.1.9 Right circular cylinderV = niR?h;
lateral surface area = Rh

FIGURE 19.1.10 Cylinder (or prism) with parallel
basesV = Ah.

FIGURE 19.1.11 Right circular coneV = 1/3 iReh;
lateral surface area rRI = nRJ R’ +h’.

FIGURE 19.1.12 SphereV = 4/31R®; surface area =mR2.

_ dy 1
If x = f(y), then o ody
Ify = f(u) and u = g(x), then& d—y% chainrule)

_ _ dy _g(t) g9y FOg"O-gO" ()
If x = f(t) andy = g(t), then Q) d e [f,(t)]g

(Note: Exponent in denominator is 3.)
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d -
1. &(a)-o
d n_
2. &(X)—
d du
3. — —a—
dx( ) Eldx
4. i(u+v)=$+—
dx dx
d dv

" dx
8 ieu -eUE
dx dx

10. - log,u= (Wu)

d du
11 log,u= (109, e)(]/u)&

d v-1 E

12. —u'=wu

dx dx

13 is:inu = cosuE
T dx dx

d . d
14. —COSU=—sinu—

dx
d

15. —tanu=sec?u—

dx

16. i(:tnu =-csc?u—

dx

dx

d du
17. —secu = secutanu—X

d

du
18. —Cscu =—-cscuctnu—
dx

dx

d
19.

—sin"u= — (—%nssm us
dx N1-u? X

20. icos'luz “_l @ (Oscos'lusn)
dx J1-u? dx

21, Y tantu= 12@
dx 1+u” dx

22. Y eny=_ L M
dx 1+u® dx
d ., _ 1 du
—sectu=—

23, dx u? -1 dx

(—n<seclu<—%rr O<sec’1us%r[)

d " -1 du

o4, dx uu? -1 dx

25.

26.

27.

(—n< csctus -4 O<csc’1us%r[)

isinhu = coshuﬂ
dx dx
i<:oshu = sinhuﬁ
dx dx
itanhu = sechzuﬁ
dx

du

28. ictnhu = —csch?u
dx dx
29. isaechu = —sechutanh u$
dx dx
30. icschu = —cscl’nuctnhuE
dx dx
d. , 1 du
31.—sSn"u= —
dx Au? +1 ox
32. icosh‘lu = 1 d
d Ju? -1 ox
33 Janty=_ 1t 5 du
dx 1-u” dx
34. 9 ctnhy = 5 1 du
dx u® -1 dx
35 Jeanty=— 1
©dx u1-u? X
36 B P .
" dx uyu? +1 dx
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Integrals

Elementary Forms (Add an arbitrary constant to each integral)
1. J'adx=ax

2. J'a[f(x) dx = af f(x) dx

o) _dy
3. J'cp(y ) dx = I dy, wherey' = o
4, J'(u+v)dx:J'udx+J'vdx, where u and v are any functions of x
5 fudv=ufdv-fvdu=uv-{vdu
| / I
6. uﬂdx:uv— vﬁdx
dx dx
7. [x ax=X" =1
.Ix = exceptn = —
f(x) dx ,
8 I 00 =logf(x), [df(x)= f'(x) ]
9 d;( logx
10. If'( x), [df(x) x|
2./ f
11. J'eX dx = e*

12. J'eax dx =e*/a

ba)(
13. [b™ dx= , (b>0
I X alogb (b>0)
14. J'Iogxdx:xlogx—x
15. J'axlogadx:ax, (a>0)

16. IL = Etan’lé

a?+x? a a
L X
a
17. J' de Q or
a -X 0
Ba0a s (@)
B—ictnh‘15
a a
18 dx :H or
3 o
01 X—a
Hz—alog Ta (X2>a2)
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0. 4 X
o
g
dx O
19. J' =g or
va®-x> O
0 -1 X 2 2
cost =, (a?>x
et (2%
adx [y2 4 220
20. [———=logx+ VX" ta
Vx? +a? g%( .
21 I‘L:iwﬂl
xx2-az |d |al
O /52 2 [
22. IL:-EKQMD
xva? + x? a

Forms Containing (a + bx)

19-21

For forms containin@ + bx, but not listed in the table, the substitution (a + bx) x may prove helpful.

23. I(a+ bx)" dx = %, (n=-1)
24. J'x(a+ bx)" dx = bz(nl+ ) (a+bx)"? - bz(:+1) (a+bx)™, (nz-1-2)

i a+bx)n+3 _za(a+bx)n+2 +a2 (a+bx)n+lg

25. J'xz(a+ bx)" dx =

b*F n+3 n+2 n+l {
™2 (g + bx)" an -1
+ J'xm(a+bx)” dx
O m+n+l m+n+1
O
0 or
O
26. Ixm(a+bx)" d=g L I:|—><"’+1(a+bx)"”+(m+n+2)‘[><’“(a+b><)"+l xS
m(n+1) B
0
O or
:
1 m n+1_ m-1 n |:|
W% (a+bx) maJ'x (a+bx) dxH

dx _ 1
27. Ia+bx —Elog(a+bx)

dx 1
28. =-
I(a+ bx)2 b(a+bx)

dx 1
20. =-
I (a+bx)*  2b(a+bx)’

E,b%[a+ bx - alog(a + bx)]

X dx

30. J' =0 or
a+ bx 0

Srg -b—ilog(a+ bx)

x dx 1 a [
31. = b:
I(a+ bx)? b’ Eog(aw X)+ a+bxH
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32-Ia)ictj))>(< :bilzén 2) ;+bx (n—l)(:+bx)"'1§ nzl2
33. I;(:s:( =bf13%(a+ bx)? —2a(a+bx)+a2|og(a+bx)g
34. J‘(axj :;;2 :%§m+ bx — 2alog(a + bx) - aiszg
x2dx _ 1 (a+bx)+ 2a _3722%
a+bx 2(a+bx)" g

O

35. I @b’ b %og
u]
H

2 _ 0
36. xdxn:i3 1 2a a 0 n#123
(a+bx)" b g

-3)(a+bx)" l (n-2)(a+bx)"? B (n-1)(a+bx)™

dx 1, a+bx
37. [ =-ZjggdT™X
Ix(a+bx) a ¥ x
38 dx _ 1 1. a+bx
' .[x(a+ bx)* ala+bx) a’
O
39.‘[ dx 3=%DlD2a+bXDZ+|og x 5
x(a+bx)® a gﬂmbx u a+bxpg
dx 1. b a+bx
0 [ — =——+ |
Ixz(a+bx) ax  a? o

a1 dx _2bx-a b—zlog X
' Ix3(a+ bx) 2a’x* a® ~ a+bx
ax a+ 2bx 2b a+bx
42. =- lo
I x¥(a+bx)?  a’x(a+ bx) PR

The Fourier Transforms

For a piecewise continuous functiéifx) over a finite interval G x < m, thefinite Fourier cosine
transformof F(X) is

:IHF(x)cosnx dx (n=0,1,2 ..) (19.1.1)

If x ranges over the intervalOx < L, the substitutionk’ = Tx/L allows the use of this definition also.
The inverse transform is written

0

F(x):fc(0)+zz f (n)oosnx  (0<x <) (19.1.2)
n=
where F ) = [F(x + 0) +F(x — 0)])/2. We observe thaf x)(= F(x) at points of continuity. The formula

f@(n) :J' F"(x) cosnx dx
o (19.1.3)

=1, () - F(O) + (-7 F ()

makes the finite Fourier cosine transform useful in certain boundary value problems.
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Analogously, thdinite Fourier sine transfornof F(x) is

:I"F(x)sinnx dx (n=1,23, ..) (19.1.4)

and

o

ﬁ(x):—Zfs(n)sinnx (0<x<m (19.1.5)

Corresponding to Equation (19.1.6), we have

f@(n) :J' F"(x)sinnx dx
0

(19.1.6)
= -n’f,(n) - nF(0) - n(-1)" F(m)
Fourier Transforms
If F(x) is defined forx = 0 and is piecewise continuous over any finite interval, and if
J' F(x) dx
0
is absolutely convergent, then
2 =
= JT[J’ F(x) cos(ax) dx (19.1.7)
0
is theFourier cosine transfornof F(x). Furthermore,
_ 2
= ‘—J' f_(a)cos(ax) da (19.1.8)
V11 Jo
If lim,_,, d'F/dx' = 0, an important property of the Fourier cosine transform,
2 ”DdszD
£2)(a) = os{aix
o (o) = WEC s(ax)
(19.1.9)

32 r-1

==z Z (=185 010" + (-1) 0* f ()

‘L

where lim_, d'F/dX = a,, makes it useful in the solution of many problems.
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Under the same conditions,

2 .
f(a)=_—=[ F(x)sin(ax) dx 19.1.10
)= 2 [ F(9sin(e (19.1.10)
defines thd~ourier sine transformof F(x), and

12 7 .
F(x)=.—[ f.(a)sin(ax)da 19.1.11
(9=, 1 [ ta)sn() (19.1.11)
Corresponding to Equation (19.1.9) we have

' 2~ d¥F
£ (a) = = Wsm(otx) dx

(19.1.12)

AT

—_ z _q\N 4 2n-1 _q\1ly2r
- \ T g( 1) a A —on +( 1) a fs(a)
Similarly, if F(x) is defined for e < x < o, and if [*_F(x) dxis absolutely convergent, then

1

f(x) = x) e dx 19.1.13
(9=—2[ Fi (19.1.13)
is theFourier transformof F(x), and
F(x)=—2 [ f(a)e™ da (19.1.14)
\ 2T J-w
Also, if
ljm/9 f =0 (n=1,2 ..,r-1)
X< dx
then
F0(a)= 2 [ FO(x)e™ dx = (-ia)' f(c) (19.1.15)
A\ 2T )
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Finite Sine Transforms

19-25

f(n)

F(9

=

10.

fs(n):J;nF(x)sinnx dx (n=1,2 ..)

(=™ 1,(n)

11. ——

12. ——

13.

14. O

15.

16.

17.

18.

19.

e (kz0, 1,2, ..)

é'g whenn=m

(m=1,2 ..)
o whennzm

H

n
n? - k?

O n

E,m[l—(—l)"”"] whennzm=1, 2, ...

@ whenn=m

(k#0,1,2 ..)

[1—(—1)n coskn] (k#1, 2 ..)

F()

F(mt—x)

m—-X

=31

when 0 < x <12
-x when /2<x<m

x3

e

sinhc(rt— x)
sinhct
sinhk(m-x)
sinhkmt

sin mx

coskx

cosmx

Tisinkx

_ xcosk(m-x)
2ksin? kx

2ksinkTtt

2 bsinx
—arctan———
1 1-bcosx

2 2bsinx
—arctan 3
i 1-b
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Finite Cosine Transforms

fo(n) F(x)
1. f(n) :J'nF(x)cosnx & (n=01,2 ..) F(%)
0
2. (-9"f(n) F(t—x)
3. Owhenn=1,2 ...; f(0)=m 1
4. gsinm; f(0)=0 El when 0 < x < TY2
n 2 o1l whenm2<x<m
1-(-1)" ™®
5. 00 0=T x
(0 X
6 nz fc(o)_? o
l _ 2
7o f(0)=0 (m-%)°
21 6
(D" _1-(=0) us 8
8. - f = X
3 e (0) .
n?+c
10 coshe{rt=x)
n®+c? csinhcmt
k n _
11. W[(—l) cosrrk—l] (k#0,1,2 ..) sin kx
1) n+m_l i
12. (nz)fmz; fc(m)=0 (m:]_’ 2, ) msmmx
13 1 (k#2012 ..) _ cosk(m-x)
-k ksinkrt
14. Owhenn=1, 2, ..; fc(m):g (m:]_’ 2, ) cosmx
Fourier Sine Transforms
F() f(a)
1 O (0<x<a) 2 d-cosa]
- (x>a) \nH o B
- 2 1(p) . pn
2. xP* (0<p<1] 2 prt
0<p<3) \m a® SN
3 Gnx (0<x<a) 1 %n[a(l—a)] _sin[a(l+a)]%
Ep (x>a) Jeng 1-a lta §
4. e 200 O
- \mH+a?H
5. ye X2 ae 2
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F(x) fy(o)
X U a? Oa20 a? a0
6. cos— \23@3n—C — COS—— S
2 BN M 2 CH2
X 0 o 0’0 . a? (o200
7. sin— ~v2[os—C +sin—§
2 VRS MH2 BT 2 CH2 B
* C(y) andSy) are the Fresnel integrals
1 21
Cly)=—— [ ——cost dt
(y) \2T[ o] \s‘/t
1 2 1.
=—— [ ——sintdt
S(y) \ZTIJ:) T

Fourier Cosine Transforms

F(x) f(a)
L 2 (0<x<a) 12 sinaa
' (x>a) \n o«
4 2T(p) __pn
2. xP* (0<p<)) T
5 [Posx  (0<x<a) 1 Eisin[a(l—a)]+sin[a(1+a)]g
(x>a) vampg 1l-a l+a g
4. e~ 2010
Vml+a?0
5. e—xz/z e—02/2
6 cos—2 cos[b(2 -
H2 ~af
7 sinx—2 cos[b(z—ED
SR H2 ~aH
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Fourier Transforms

F(x) f(a)
Umn
= Joj<a
1 sinax o2
: O
X
Eb la| >a
O
) Qeiwx (p <X< q) i eip(w+c(] _eiq(w+a)
. (x<px>q) Jom  (w+a)
@fcxﬂwx (X>0) |
N B) (x<0) (c>0) J2m(w+a +ic)
2 1 a?ap
ox 1.
4. e R(p)>0 2p
2 O
5. cospx? CoSF— —— [
J2p AP 40
6 Sian2 70035724.2%
J2p AP 4D
. prm
- Pt
7. X" (0<p<) 2 (L= p)sin 2
\mo )
. < e ve) v
\‘X‘ o a% +q?
— cos2cosh™
0. coshax (—n<a<n) g (:oszcosh2
cosh T« \ 7t cosha +cosa
sinhax 1 sina
0. sinhTx (r<a<m) J2m cosha + cosa
—1 (x<q)
11. ya®-x* \ J,(aat)
0 (x>a) 2
sing)\/a2 +x2 E E].)i (‘0“ > b)
12. — = E O/m
val +x? H\/fjog\bz'o‘zg (af <b)
B (< i"
13. n .
(x>1) T Jmaal®)
Dafosgn“az - x2 E .
X<a Ty 0y |
14. 0 \s/az—XZ (‘ ‘ ) 4\:2J0%i\a2 +b2[|
£y (%>2)
g oshg)\ a? -x20
H g I 0
<a ! 2 _h2
15. g \:‘/az—Xz (‘X‘ ) ,VEJD%i\a b 0
El X>a)
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The following functions appear among the entries of the tables on transforms.

Function Definition Name
Ei(x) J’_w* dv; or sometimes d?lned & Exponential inggral function
~Ei(-x) = &~ dv
Si(x) J’ snv dv Sine inggral function
v
) cosv L .
Ci() J’ ——dv; orsometimesdefined as Cosine inggral function
negative of thisintegral
erf(x) ij‘ e dv Error function
T
erfc(x) 1-erf(x J' e dv Complementary function to error function
N T[
LX) ed (x”e‘*), n=o0,1, .. Laguerre polynomial of efjreen
n dx"

Bessel Functions

Bessel Functions of the First Kind, J(x) (Also Called Simply Bessel Functions)
(Figure 19.1.13)

Domain: k > 0]
Recurrence relation:

2n

J .(x) = 7Jn(x) -J,(x), n=0,1,2 ..
Symmetry:J_(X) = (=1)J,(X)
0. J,(20%) 3. J;(20x)
1. J,(20x) 4. J,(20x)
2. J(20x) 5. J(20x)

Bessel Functions of the Second Kind, Y,(x) (Also Called Neumann Functions
or Weber Functions) (Figure 19.1.14)

Domain: k > 0]
Recurrence relation:

%)= 2,00 -Y,,(4, n=0,12 ...
Symmetry:Y_(X) = (—1)Y,(X)
0. Yy(20x) 3. Y5(20%)
1. Y, (20x) 4. Y,(20x)
2. Y,(20x) 5. Y5(20x)
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WO WY

FIGURE 19.1.13 Bessel functions of the first kind.

FIGURE 19.1.14 Bessel functions of the second kind.

Legendre Functions

Associated Legendre Functions of the First Kind, Prr]n(x) (Figure 19.1.15)

Domain: [-1 <x < 1]
Recurrence relations:

(2n+D)xP™ = (n+ m)P", (x)
n-m+1

Pm

(%)

, n=123, ...

RM(x) = (x* 1) [(n-mpxer() - (n+ mPR ()], m=0,1,2, .
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1-0
2-4
2-2 2-3
241
-3 1-4
— 13
1-1
3-2
A
4-3
3-3
3-4
4-4

FIGURE 19.1.15 Legendre functions of the first kind.

with

Special case:Pno = Legendre polynomials

1-0. P’(x)

1-1. P’(x)  2-1.0.25R'(x)

1-2. PP(X) 2-2.0.25P5(x) 3-2. 0.187(X)

1-3. PP(X) 2-3.0.25P(x)  3-3.0.187(X) 4-3. 0.083(x)
1-4. PY(X) 2-4.0.25P/(X) 3-4.0.1@7(X)  4-4. 0.0B5(X)
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Table of Differential Equations

Equation Solution
1. y’:%:f(x) y =/ dx+c
2.y +p(y =d(x) y = exp[f p(x) d¥{c + [ exp[ p(x) dxja(x)dx}
3.y +p(X)y = qx)y* Setz=y . Z + (1 —-a)p(X)z = (1 —a)q(x) and use 2
az0,az1
4.y =1(¥)g(y) Integrate % = f(x) dx (separable)
5. %:f(x/y) Setyzxuﬁu+x$=f(u)

I 1 du=Inx+c
f(uy-u

(Dax+by+c O Setx=X+ay=Y+p

6. y' = _
y Ha,x+b,y+c,H %GJ'blB__C (Dax+by0
Choose [ = E

FR,a +bB =, " xvbY

If a,b, —a,b, # 0, setY = Xu - separable form

Ua, +bul

u+Xu' = f%mg

If a,b, —ab, = 0, setu=ax+by -
e 1‘DU+cl Dsin(:e
Y Hau+c,H

aX + by = k(ax+ ay)

7. y'+ay=0 y = ¢, cosax + ¢, sinax
8. y-ay=0 Yy = Ce™ + e
2
- g

9. y'+ay +by=0 Sety=e @y . éj 2 =0

y' +ay +by y 2B
10. y" +a(x)y +b(x)y =0 Sety=e (v2)fa o B} a— 3%1 =0

O 4 20

11, ' +xy + (¥-a)y=0 i. If ais not an integer

a= 0 (Bessel) Y = CJy(X) + . (X)

(Bessel functions of first kind)
ii. If ais an integer (say)
y = C].Jn(x) + CZYn(X)
(Y, is Bessel function of second kind)
12 10y =2y +a@+1y=0 y(X) =cp,(X) +C,0,(%)

a is real (Legendre) (Legendre functions)

13. y +ay? =hx Setu’ =ayu - u" —-abxu = 0 and use 14
(integrable Riccati)
a, b, nreal

14. y" —axly + by =0 y = xP[c, J(kx9) + c,J_ (k)

wherep = (@ + 1)/2,v = (@ + 1)/{u + 2),
k=20/(u+2),g=W+2)2
15. Item 13 shows that the Riccati equation is linearized by raising the order of the equation.
The Riccati chain,which is linearizable by raising the order, is
u=uy, U =ulyt+yd, ur=uly + 3y + Y
u® = uly” + 4y’ + By + 3(¢/)* +y]....
To use this consider the second-order equatieryy +y2 =f(x). The Riccati transformation
u' = yu transforms this equation to the linear df= uf(x)!
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19.2 Linear Algebra and Matrices

George Cain

Basic Definitions

A Matrix A is a rectangular array of numbers (real or complex)

@y, &, .. %mg
T R
a
[P an, e &n0

The sizeof the matrix is said to bex m. The 1x m matrices §, --- a,,] are called rows of A, and the
n x 1 matrices

B B

are calleccolumnsof A. An n x m matrix thus consists of rows andn columns;aij denotes thelement,

or entry, of A in theith row andjth column. A matrix consisting of just one row is calledwa vector
whereas a matrix of just one column is calletblumn vectorThe elements of a vector are frequently
calledcomponent®f the vector. When the size of the matrix is clear from the context, we sometimes
write A = (g).

A matrix with the same number of rows as columnssguarematrix, and the number of rows and
columns is theorder of the matrix. The diagonal of anx n square matriA from a,; to a,, is called
themain, or principal, diagonal.The worddiagonalwith no modifier usually means the main diagonal.
The transposeof a matrixA is the matrix that results from interchanging the rows and columAs of
It is usually denoted b&™. A matrixA such thafA =AT is said to beymmetricTheconjugate transpose
of A is the matrix that results from replacing each eleme#t bl its complex conjugate, and is usually
denoted byAH. A matrix such thaf = AH is said to beHermitian

A square matriA = (g;) is lower triangularif a; = 0 forj >i and isupper triangularif a; = 0 for
j <i. A matrix that is both upper and lower triangular idi@yonal matrix. Then x n identity matrix
is then x n diagonal matrix in which each element of the main diagonal is 1. It is traditionally denoted
I, or simplyl when the order is clear from the context.

R
DDEDD
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Algebra of Matrices

The sum and difference of two matricksandB are defined whenevér andB have the same size.

In that case€C = A + B is defined byC = (¢;) = (; £ b;). The productA of a scalat (real or complex
number) and a matrif is defined bytA = (ta;). If A is ann x m matrix andB is anm x p matrix,

the produciC = AB is defined to be the x p matrix C = (c;) given byc; = Z}', a,by;. Note that the
product of am x m matrix and arm x p matrix is ann x p matrix, and the product is defined only
when the number of columns of the first factor is the same as the number of rows of the second factor.
Matrix multiplication is, in general, associati(BC) = (AB)C. It also distributes over addition (and

subtraction):

A(B+C)=AB+AC and (A+B)C=AC+BC

It is, however, not in general true teB = BA, even in case both products are defined. It is clear that
(A+B)"=AT+BTand A +B)" =AH + BH. It is also true, but not so obvious perhaps, tA&){ =
BTAT and AB)" = BHAF.

Then x n identity matrixl has the property thé = Al =A for everyn x n matrixA. If A is square,
and if there is a matriB such atAB = BA =1, thenB is called thanverseof A and is denoted.
This terminology and notation are justified by the fact that a matrix can have at most one inverse. A
matrix having an inverse is said to io@ertible, or nonsingular,while a matrix not having an inverse
is said to benoninvertible or singular. The product of two invertible matrices is invertible and, in fact,
(AB)1 = B'A-L The sum of two invertible matrices is, obviously, not necessarily invertible.

Systems of Equations

The system of linear equations im unknowns

3y, X ta,X, tagX tota, X, =b
8y Xy t8,X, T apXy Tt a, X, =D,

a, X ta,X, +aX; .. +a, X, = b

may be writterAx = b, whereA = (g;), X = [X X, --* X,|', and b = [p b, --- b]". Thus A is am x m
matrix, and x and b are column vectors of the appropriate sizes.

The matrixA is called thecoefficient matrixof the system. Let us first suppose the coefficient matrix
is square; that is, there are an equal number of equations and unknois.uibper triangular, it is
quite easy to find all solutions of the system. Ttheequation will contain only the unknowrs X,

..., X,, and one simply solves the equations in reverse order: the last equation is sotyethéoresult

is substituted into then(— 1)st equation, which is then solved fqr;; these values of, andx, , are
substituted in then(— 2)th equation, which is solved fgr,, and so on. This procedure is known as
back substitution.

The strategy for solving an arbitrary system is to find an upper-triangular system equivalent with it
and solve this upper-triangular system using back substitution. First suppose the ajgmént\We
may rearrange the equations to ensure this, unless, of course the first cohumnsradfos. In this case
proceed to the next step, to be described later. Foii eazketm, = a,/a,;. Now replace th&h equation
by the result of multiplying the first equation by, and subtracting the new equation from itte
equation. Thus,

a1'1)(1 + a1'2)(2 + a1'3)(3 Tt a1me = l:.)I
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is replaced by

00, +(a, + mya,)x, +(a, + mua,)x, +...+(a, +m,a, )x, =b +mb

After this is done for all = 2, 3,...,n, there results the equivalent system

Ay tapX, FagX .+ X, =h
OD(1+aé2X2 +aé3x3+"'+aénxn :bé
OD(1+a';2X2 +aé3X3+...+aéan :bé

I r I — U
OD(1+an2X2 +an3X3+"'+aan _bn

in which all entries in the first column belaw, are 0. (Note that if all entries in the first column were
0 to begin with, them,; = 0 also.) This procedure is now repeated for the {) x (n — 1) system

aéZXZ + aéSXS Tt aénxn = bé

aéZXZ + aé3x3 t.. +aéan = bé

Bl,X, X+t X, =D

to obtain an equivalent system in which all entries of the coefficient matrix t#low  are 0. Continuing,
we obtain an upper-triangular system Ux = ¢ equivalent with the original system. This procedure is
known asGaussian eliminationThe numbem; are known as theultipliers

Essentially the same procedure may be used in case the coefficient matrix is not square. If the
coefficient matrix is not square, we may make it square by appending either rows or columns of Os as
needed. Appending rows of Os and appending Os to make b have the appropriate size equivalent to
appending equations 0 = 0 to the system. Clearly the new system has precisely the same solutions as
the original system. Appending columns of Os and adjusting the size of x appropriately yields a new
system with additional unknowns, each appearing only with coefficient 0, thus not affecting the solutions
of the original system. In either case we may assume the coefficient matrix is square, and apply the
Gauss elimination procedure.

Suppose the matrik is invertible. Then if there were no row interchanges in carrying out the above
Gauss elimination procedure, we have lthkfactorizationof the matrixA:

A=LU

where U is the upper-triangular matrix produced by elimination and L is the lower-triangular matrix
given by

[
[N
o

O

0

r
I
EEks
[EY
EJOD
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A permutationP; matrix is am x n matrix such that PA is the matrix that results from exchanging
row i andj of the matrix A. The matrix;Fs the matrix that results from exchanging rovesidj of the
identity matrix. A product P of such matricesi® called gpermutationmatrix. If row interchanges are
required in the Gauss elimination procedure, then we have the factorization

PA=LU

where P is the permutation matrix giving the required row exchanges.

Vector Spaces

The collection of all column vectors withreal components iBuclidean n-spageand is denoted R
The collection of column vectors withcomplex components is denote@l @/e shall useector space
to mean either Ror C. In discussing the space’,Rhe wordscalar will mean a real number, and in
discussing the space",Gt will mean a complex number. A subset S of a vector spaceubspace
such that ifu andv are vectors in S, anddfis any scalar, them+v andcu are in S. We shall sometimes
use the wordpaceto mean a subspace Bf= {v,,v,,..., v} is a collection of vectors in a vector space,
then the set S consisting of all vectopg, + c,v, + --- + ¢V, for all scalars;,c,,..., C,, is a subspace,
called thespanof B. A collection {v,V,,..., v} of vectorsc,v, + c,v, + --- + ¢V, iS alinear combination

of B. If S is a subspace ali= {v,,v,,..., V,} is a subset of S such that S is the spaB,ahenB is
said tospanS.

A collection {v;,v,,..., Vi,;} of n-vectors idinearly dependenif there exist scalars,,c,,..., ¢, not all
zero, such that,v; + c,v, + --- + ¢V, = 0. A collection of vectors that is not linearly dependent is said
to belinearly independeniThe modifietinearly is frequently omitted, and we speak simply of dependent
and independent collections. A linearly independent collection of vectors in a space S that spans S is a
basisof S. Every basis of a space S contains the same number of vectors; this numbdinisribi®n
of S. The dimension of the space consisting of only the zero vector is 0. The coBestif®, e,,...,

e}, where g = [1,0,0,..., 0], e =[0,1,0,..., 0], and so forth (ehas 1 as itth component and zero for
all other components) is a basis for the spacean@ C. This is thestandard basigor these spaces.
The dimension of these spaces is thusn a space S of dimensian no collection of fewer than
vectors can span S, and no collection of more theectors in S can be independent.

Rank and Nullity

The column spacef ann x m matrixA is the subspace of'Rr C' spanned by the columns &f The
row spaces the subspace ofr C"spanned by the rows Ar Note that for any vector= [x; X,, --- X",

[an% |2312% [almg

= S 2+ mQ
AX=Xg gt gt et g
00 00 0 0O
K (@20 [Bom

so that the column space is the collection of all vecforsand thus the systeAx = b has a solution
if and onlyif b is a member of the column spacefof

The dimension of the column space is thek of A. The row space has the same dimension as the
column space. The set of all solutions of the sydiens 0 is a subspace called thell spaceof A,
and the dimension of this null space is tiodlity of A. A fundamental result in matrix theory is the fact
that, for ann x m matrixA.

rank A + nullity A =m
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The difference of any two solutions of the linear systetr= b is a member of the null spaceAof
Thus this system has at most one solution if and only if the null#yisfzero. If the system is square
(that is, ifA isn x n), then there will be a solution for every right-hand $idieand only if the collection
of columns ofA is linearly independent, which is the same as saying the raklksof. In this case the
nullity must be zero. Thus, for amy the square systeAx = b has exactly one solution if and only if
rankA = n. In other words th@ x n matrixA is invertible if and only if ranld =n.

Orthogonality and Length

Theinner productof two vectors x and y is the scaldlyxThelength or norm, ||x||, of the vecto is
given by|x|| = vx"x. A unit vectoris a vector of norm 1. Two vectors x and y arthogonalif x"y

= 0. A collection of vectors {yv,,..., v} in a space S is said to be arthonormalcollection if v/" Vi

=0 fori #j and v'v, = 1. An orthonormal collection is necessarily linearly independent. If S is a
subspace (of 'Ror C") spanned by the orthonormal collection,,..., v}, then theprojection of a
vector x onto S is the vector

proj(x; §) = (X" v, +(xv, v, +...+ (xv, v,

The projection of x onto S minimizes the functf¢y) = ||x — \{|? for y O S. In other words the projection
of x onto S is the vector in S that is “closest” to x.

If b is a vector and is ann x m matrix, then a vector x minimiz¢s — AXJ? if only if it is a solution
of AHAx = AHb. This system of equations is called system of normal equatiof@r the least-squares
problem of minimizing|b — AX2.

If A is ann x m matrix, and rankA = k, then there is @ x k matrix Q whose columns form an
orthonormal basis for the column spacéadnd ak x m upper-triangular matriR of rankk such that

A =QR

This is called th&)R factorizationof A. It now follows that x minimizegb — AXJ? if and only if it is
a solution of the upper-triangular system Rx #hQ

If {w ,w,,..., W} is a basis for a space S, the following procedure produces an orthonormal basis
{ViVy..., v} for S.

Setv; = w,/|lwy]|.

Let V, =w, — projv,; S;), whereS, is the span of\{;}; setv, = v, /[[V,]|

Next, let v, =w, — projvs; S,), whereS, is the span of\{;, v,}; setv, = V,/|[V,||.
And, so on:V, = proj(w; S_,), where S, is the span of {yv,,..., v._i}; set v = v, /|[v,]l This the
Gram-Schmidt procedure.

If the collection of columns of a square matrix is an orthonormal collection, the matrix is called a

unitary matrix In case the matrix is a real matrix, it is usually calledrinogonal matrix A unitary
matrix U is invertible, ant)-! = U". (In the real case an orthogonal ma@ixs invertible, andQ-1=Q".)

Determinants

Thedeterminanif a square matrix is defined inductively. First, suppose the determin@nhédstbeen
defined for all square matrices of orden.<Then

detA = allcll + a12C12 ot alncln

where the number§; arecofactorsof the matrixA:
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- i+
C, =(-1)" detM,
where M is the i — 1) x (n — 1) matrix obtained by deleting tht row andjth column ofA. Now

detA is defined to be the only entry of a matrix of order 1. Thus, for a matrix of order 2, we have

detéii ZE: ad -bc
There are many interesting but not obvious properties of determinants. It is true that
detA = a,C;; +a,C, +...+3,C,
for any 1<i < n. It is also true that dat= defA”, so that we have
detA =a,C; +a,C, +...+a,C,

forany 1<j <n.

If A andB are matrices of the same order, therABet (defd)(deB), and the determinant of any
identity matrix is 1. Perhaps the most important property of the determinant is the fact that a matrix in
invertible if and only if its determinant is not zero.

Eigenvalues and Eigenvectors

If A is a square matrix, ary = Av for a scalai and a nonzero v, thenis aneigenvalueof A and v

is aneigenvectorof A that correspondso A. Any nonzero linear combination of eigenvectors corre-
sponding to the same eigenvalhes also an eigenvector correspondinghtoThe collection of all
eigenvectors corresponding to a given eigenvalue thus a subspace, called @igenspacef A. A
collection of eigenvectors corresponding to different eigenvalues is necessarily linear-independent. It
follows that a matrix of ordem can have at most distinct eigenvectors. In fact, the eigenvalues of

are the roots of theth degree polynomial equation

det(A -Al)=0

called thecharacteristic equationf A. (Eigenvalues and eigenvectors are frequently celladacteristic
valuesandcharacteristic vectory.

If the nth order matrixA has an independent collectionrokigenvectors, theA is said to have a
full setof eigenvectors. In this case there is a set of eigenvectérgtadt is a basis for Ror, in the
complex case, T In case there ane distinct eigenvalues dh, then, of courseA has a full set of
eigenvectors. If there are fewer thamlistinct eigenvalues, theh may or may not have a full set of
eigenvectors. If there is a full set of eigenvectors, then

D=S'AS or A=SDS™

whereD is a diagonal matrix with the eigenvalue\adn the diagonal, arlis a matrix whose columns

are the full set of eigenvectors. Af is symmetric, there ane real distinct eigenvalues & and the
corresponding eigenvectors are orthogonal. There is thus an orthonormal collection of eigenvectors that
span R, and we have

A=QDQ" and D=Q'AQ
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whereQ is a real orthogonal matrix amiis diagonal. For the complex caseAifs Hermitian, we have

A=UDU" and D=U"AU

whereU is a unitary matrix and is areal diagonal matrix. (A Hermitian matrix also hadistinct
real eigenvalues.)
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19.3 Vector Algebra and Calculus

George Cain

Basic Definitions

A vector is a directed line segment, with two vectors being equal if they have the same length and the
same direction. More precisely,vactoris an equivalence class of directed line segments, where two
directed segments are equivalent if they have the same length and the same directemgtfibéa
vector is the common length of its directed segments, arahtile betweerectors is the angle between
any of their segments. The length of a vector u is denofedHere is defined a distinguished vector
having zero length, which is usually denofedt is frequently useful to visualize a directed segment
as an arrow; we then speak of the nose and the tail of the segmestniine v of two vectorau and
v is defined by taking directed segments frerandv and placing the tail of the segment representing
v at the nose of the segment representiagd definingi + v to be the vector determined by the segment
from the tail of theu representative to the nose of theepresentative. It is easy to see thatv is
well defined and that + v =v + u. Subtraction is the inverse operation of addition. Thusliffierence
u —v of two vectors is defined to be the vector that when addedjiteesu. In other words, if we take
a segment from and a segment fromand place their tails together, the difference is the segment from
the nose of v to the nose wf The zero vector behaves as one might expe¢t) = u, andu —u =0.
Addition is associativeu + (v + w) = (U + V) +w.

To distinguish them from vectors, the real numbers are cadlaldrs The productu of a scalat
and a vectou is defined to be the vector having lendfHu] and direction the same asf t > 0, the
opposite direction if < 0, Ift = 0, thentu is defined to be the zero vector. Note tijat+ v) =tu + tv,
and € + s)u = tu + su. From this it follows thatt —v =u + (-1).

The scalar productu - v of two vectors isy|jv|] cos8, where@ is the angle betweem andv. The
scalar product is frequently called ttet product.The scalar product distributes over addition:

ulfv+w)=ulv+ulw

and it is clear thattq) - v = t(u - v). Thevector producu x v of two vectors is defined to be the vector
perpendicular to both andv and having lengtl|v| sin 8, where8 is the angle betweanandv. The
direction ofu x v is the direction a right-hand threaded bolt advances if the wedaotated tor. The
vector is frequently called tr@oss productThe vector product is both associative and distributive, but
not commutativeu x v = -v x u.
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Coordinate Systems

Suppose we have a right-handed Cartesian coordinate system in space. For each wecassociate

a point in space by placing the tail of a representativeatfthe origin and associating withthe point

at the nose of the segment. Conversely, associated with each point in space is the vector determined by
the directed segment from the origin to that point. There is thus a one-to-one correspondence between
the points in space and all vectors. The origin corresponds to the zero vector. The coordinates of the
point associated with a vectarare calleccoordinatesof u. One frequently refers to the vectoland

writesu = (X, y, 3, which is, strictly speaking, incorrect, because the left side of this equation is a vector
and the right side gives the coordinates of a point in space. What is meant is thal are the
coordinates of the point associated witbinder the correspondence described. In terms of coordinates,

for u = (uy, U, Ug) andv = (vy, v,, V), we have

TRV (TESVARTARSVARTIERA
tu = (tu,, tu,, tu,)
ulv =uyv, +u,v, +u,v,
uxvs= (u2v3 = VU, UV, — VU, WV, = vluz)
The coordinate vectors, j, andk are the unit vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1). Any

vectoru = (U;, U,, Uy) is thus a linear combination of these coordinate vectorsufii +u,j + uk. A
convenient form for the vector product is the formal determinant

di i kO
uxv= det%J1 u, usg
B’l V2 VZH

Vector Functions

A vector functionF of one variableis a rule that associates a vedit) with each real numbdrin
some set, called thdomainof F. The expressioriimtqtO F(t) = a means that for argy> 0, there is a
0 > 0 such thatH(t) —a] <& whenever 0 <t|-t,| <. If F(t) = [x(t), y(t), z(t)] anda = (a;, &, &), then
”muo F(t) = aif and only if

!irlrlx(t):a1
limy(t) = a,
limz(t) = a,

t-ty

A vector functionF is continuous att, if Iirtn F(t) = F(t,). The vector functiorr is continuous at if
and only if each of the coordinate@), y(tjféndz(t) is continuous at,.
The functionF is differentiableatt, if the limit

”m%Fa+m—ﬂm
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exists. This limit is called théerivativeof F att, and is usually writtef'(t,), or dF/dt)(t;). The vector
function F is differentiable at, if and only if each of its coordinate functions is differentiablé,.at
Moreover, (F/dt)(t,) = [(dx¥di)(ty), (dy/di)(ty), (dZdi)(t,)]. The usual rules for derivatives of real valued
functions all hold for vector functions. ThugHifindG are vector functions argls a scalar function, then

E(F+G):dj+ﬁ
dt dt  dt
£(§):sﬁ+§|:
dt dt dt
E(|=[<[3):FEF§+‘L':BL;
dt dtdt
g(F><G):F><d—G+d—':><G
dt dt  dt

If R is a vector function defined farin some interval, then, dsvaries, with the tail oR at the
origin, the nose traces out some objf@éh space. For nice functiom® the objecC is acurve If R(t)
= [x(1), y(1), Z(1)], then the equations

are calledparametric equationsf C. At points whereR is differentiable, the derivativdR/dt is a vector
tangentto the curve. The unit vectdr = (dR/dt)/|[dR/dt| is called theunit tangent vectorlf R is
differentiable and if the length of the arc of curve describe® etweenR(a) andR(t) is given by
s(t), then

ds_|dR
dt | dt
Thus the lengti. of the arc fromR(t,) to R(t,) is
{ t
L= 1$dt:J’1d—R dt
i, dt k| dt

The vectordT/ds = (dT/dt)/(dgdt) is perpendicular to the unit tangdntand the numbeat = dT/dq is
the curvatureof C. The unit vectoN = (1k)(dT/ds) is theprincipal normal The vectoB =T x N is
the binormal anddB/ds = —tN. The number is thetorsion Note thatC is a plane curve if and only
if T is zero for all.

A vector functiorF of two variabless a rule that assigns a veck(s, ) in some subset of the plane,
called thedomainof F. If R(s, ) is defined for allg, § in some regio of the plane, then as the point
(s, Y varies oveD, with its rail at the origin, the nose Bf(s, § traces out an object in space. For a
nice functionR, this object is aurface, SThe partial derivativesdR/ds)(s, § and OR/ot)(s, § are
tangent to the surface R(s, 9, and the vectodR/ds) x (OR/0t) is thusnormalto the surface. Of course,
(OR/ot) x (0R/0s) = —@R/0ds) x (OR/0dt) is also normal to the surface and points in the direction opposite
that of @R/0s) x (0R/ot). By electing one of these normal, we are choosingrientationof the surface.
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A surface can be oriented only if it has two sides, and the process of orientation consists of choosing
which side is “positive” and which is “negative.”

Gradient, Curl, and Divergence

If f(x, y, 2 is a scalar field defined in some regnthegradientof f is the vector function

grad f —ﬂ|+—1+ﬁk
ox o0y o0z

If F(X, Y, 2 =F(X, Y, 21 + Fy(X, Y, 2] +F5(X, Y, 2k is a vector field defined in some regidnthen the
divergenceof F is the scalar function

OF, , OF,  OF,

dvF=—-1+—-2
ox ody 0z
The curl is the vector function
curl F = Fs _ 0RO [OF _ OF, D DaF §<
B dy 0z H E 0z 6x

In terms of the vector operatdel, O = i(d/0x) + j(d/dy) + k(0/0Z), we can write

grad f = Of
divF=00F
cul F=0OxF

The Laplacian operatoiis div (grad) =00 - 00 = (02 = (9%0x?) + (0%/0y?) + (0%02?).

Integration
SupposeC is a curve from the poinky, y,, Z,) to the point X, y,, z) and is described by the vector

function R(t) for ty <t <t,. If f f is a scalar function (sometimes calledcalar field defined onC,
then the integral of overC is

J’fxyz ) ds = J’f[R ]‘— dt

If Fis a vector function (sometimes callestextor field defined orC, then the integral df overC is

J’ny, 2) @R = J:OF[R ]—dt

These integrals are calldéide integrals
In case there is a scalar functifbsuch thatF = gradf, then the line integral

,L F(xy.2) @R = f[R(t,)] - f[R(t)]

© 1999 by CRC Press LLC



Mathematics 19-43

The value of the integral thus depends only on the end points of the@anve not on the curvé
itself. The integral is said to hEath-independentThe functionf is called spotential functionfor the
vector fieldF, andF is said to be @onservative fieldA vector fieldF with domainD is conservative
if and only if the integral oF around every closed curve D is zero. If the domai is simply
connected (that is, every closed curveDirtan be continuously deformed Dnto a point), therF is
conservative if and only if cuff = 0 inD.

Supposesis a surface described B(s, §) for (s, § in a regiorD of the plane. If is a scalar function
defined orD, then the integral of overSis given by

[f 1t dS:J"[f[R(at)]%F;XZF: dsdt

If Fis a vector function defined @) and if an orientation foB is chosen, then the integfaloverS,
sometimes called the flux &f through§ is

IJ’ny, 2) s = J"[F[Rst a—Rxa—Rddt

Integral Thorems

Supposé- is a vector field with a closed domdinbounded by the surfa&oriented so that the normal
points out fromD. Then thedivergence theorerstates that

J"!'J'dideV:J"[FEdjS

If Sis an orientable surface bounded by a closed cOrwee orientation of the closed cur@eis
chosen to be consistent with the orientation of the suBatden we havé&toke’s theorem:

J'J'(curl F)@S= j;c F [dis
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19.4 Difference Equations

William F. Ames

Difference equations are equations involvdigcrete variablesThey appear as natural descriptions of
natural phenomena and in the study of discretization methods for differential equations, which have
continuous variables.

Lety, = y(nh), wheren is an integer andl is a real number. (One can think of measurements taken
at equal intervald), 2h, 3h, ..., andy, describes these). A typical equation is that describing the famous
Fibonacci sequence ¥,, ~Y..; Y, = 0. Another example is the equatigp, —2zy,., +y, = 0,20 C,
which describes the Chebyshev polynomials.

First-Order Equations

The general first-order equatign, = f(y,), ¥, = ¥(0) is easily solved, for as many terms as are needed,
by iteration. Theny, = f(y,); ¥, = f(y.),.... An example is the logistic equatign, = ay,(1 —v,) = f(y,).

The logistic equation has two fixed (critical or equilibrium) points whgre=y,. They are 0 andy

= (a— 1)k This has physical meaning only for 1. For 1 <a < 3 the equilibriumy is asymptotically
stable, and foa > 3 there are two pointg andy,, called acycle of period twpin whichy, = f(y,) and

y; = f(y,). This study leads into chaos, which is outside our interest. By iterationy,witH,, we have

y: = (@/2)(1/2) =a/2?, y, = a(@/2?)(1 —al2?) = (@%2%)(1 —a/2?), ....

With a constant, the equatigp,, = ay, is solved by making the assumptigy= AA" and findingh
so that the equation holds. This™! = aAA", and henc@ = 0 orA = a andA is arbitrary. Discarding
the trivial solution 0 we fing, = Aa™! is the desired solution. By using a method calledvération
of constantsthe equatiory,,, —ay, = g, has the solutioy, = y,a" + =7;g,a"’™, withy, arbitrary.

In various applications we find the first-order equatiolRigtcati type y, , + ay, + by,; +c =0
wherea, b, andc are real constants. This equation can be transformed to a linear second-order equation
by settingy,= z/z, ; —a to obtainz,,; + (b + @)z, + (c —ab)z,_, = 0, which is solvable as described in
the next section.

Second-Order Equations

The second-order linear equation with constant coefficigpist ay,., + by, = f, is solved by first
solving the homogeneous equation (with right-hand side zero) and adding to that solution any solution
of the inhomogeneous equation. Th@mogeneous equatign,, + ay,., by, = 0 is solved by assuming

Y, = A", whereupom\™2 +aA™!1 + bA" = 0 orA = 0 (rejected) oA? + aA + b = 0. The roots of this
quadratic are\, = Y, (-a++a? - 4b), A, = 2, (a+ yva® —4b) and the solution of the homogeneous
equation isy, =c,A] +C,A}. As an example consider the Fibonacci equation— Y., — ¥, = 0. The

roots ofA2 =\ — 1 =0 are\, =%, (1++/5), A, =%, (1-+5), and the solutiory, = ¢,[(1++/5)/2]"

+ ¢,[(1-+5)/2]" is known as th&ibonacci sequence.

Many of the orthogonal polynomials of differential equations and numerical analysis satisfy a second-
order difference equation (recurrence relation) involving a discrete variable, sayl a continuous
variable, say. One such is th€hebshev equatioy,, —2zy,.; + Y, = 0 with the initial conditiony, =
1,y, = z (first-kind Chebyshev polynomials) ang, = 0,y, = 1 (second-kind Chebyshev polynomials).
They are denoted, (2) andV,(2), respectively. By iteration we find

L(@=1 T@=z T(g=2-1

T

J(2)=422-3z T,(2)=8z"-82°+1
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%@=0 V@=L V=22
V,(2) =42 -1, V,(2)=82"-4z

and the general solution y§(2) = ¢, T(2) + ¢,V (2,

Linear Equations with Constant Coefficients

The genrakth-order linear equation with constant ffméents 5 = p.y..,., = . Po = 1 The solution

to the corresponding homogeneous equation (obtained bygsgttin0) is as folbws. (a)y, = Zik=1ci)\?

if the A; are the distinct roots of the characteristic polynomd) = =< pA" = 0. (b) ifm, is the
multiplicity of the rod A, then the functionsy, ;= u(n)A, whereuy(n) are polynomials im whose
degree does nagxceedm, — 1, are solutions of the equatidmen the general solution of the homoge-
neous equation ig = £Lau (MA] = £L,a 57 'c,;n'A7. To this solution one addsyaparticular solution

to obtain the general solution of the general equation.

Example 19.4.1 A model equation for the peq, of a product, at #anth time, isp, + b/a(1 +p)p,,

— (b/A)pp,_, + (5 —dy)/a = 0. The equilibrium price is obtained by setfip, = p,,; = P.» = P @nd one
findsp, = (d, — s)/(a + b). The homogeneous equation has the characteristic polyhdmiab/a)(1 +
PIA — (b/a)p = 0. With A, and), as the roots the general solution of the full equasiqm & cA] +
c,\}, +p,, sincep, is a solution of the full equatiofhis is one method for finding the solution of the
nonhomogeneous equation.

Generating Function (z Transform)

An elegantway of solving linear dference equations with constant ffiméents, among other applica-
tions, is by use ofenerating functionsr, as an alternate, thez transform The generating function of
a sequenceyf}, n =0, 1, 2, ..., is the functiof(x) given by the formal serief§x) = %y x". The z
transform of the same sequense(x) = 2 yx™". Cleary, z(x) = f(1/x). A table of some important
sequences isigen n Table 19.4.1

Table 19.4.1 Important Sequences

A f(x) Convergence Domain

1 1-x* X <1

n X(1 —x)2 X <1

nm XPr(X)(L —x)™2" X <1

kn 1 -kxt [x <k

en 1 -ex) X <e?

k" cosan Losa“ x| <k*
1-2kxcosa+k“x

k" sinan % x| <kt
1-2kxcosa+k“x

g’ng X(1 — X)L I <1

o (1 W <1

" The termp,(2) is a polynomial of egreem satisfyingp,,.,(2) = (mz+ 1) -
P2+ 21 ~2) P,(9, py=1.
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To solve the linear difference equatiGf_,p,y, .., FP~ 1 we associate with it the two formal
seriesP =p, + px + --- + pxcandY =y, +y,x + y,x2*--- . If p(X) is the characteristic polynomial then
P(X) = Xp(1/X) = p(x). Theproductof the two series IQ = YP=(, + qX + -+ + QX1 + gqxk + -
whereq, = X py,.. Because,.,; = p., = = 0, it is obvious that},, = ¢, = --- = 0 — that is,
Qs a polynomial (formal series with finite number of terms). The®-1Q = q(x)/ p(x) =q(X)/Xp(1/X),
wherep is the characteristic polynomial an¢k) = Z!‘zo gX. The roots of p(x) arex™ where the
are the roots gb(x).

Theorem 1If the roots ofp(x) are less than one in absolute value, trig) converges forx| < 1.
Thorem 2.If p(x) has no roots greater than one in absolute value and those on the unit circle are
simple roots, then the coefficientsof Y are bounded. Nowj, = gy, O = G @NAQ(X) = Qy(X) +
XQ,(9. Hence 2Ly X' = Qu(X) + X QX)) [P(x)].
Example 19.4.2. Consider the equation,, +y, = -0+ 1),y, = 1. HereQ, =1,Q, = -Z, , (h + 1"
= -1/(1 —x)2

_1-x(1-%* 5 1 11 1 x

1+x 41+x 41-X 2(1—x)2

G(x)

Using the table term by term, we fint_ y.x"= X [°/,(-1)y -, =, n]x", soy, =% ,(-1y -4, -, n.
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19.5 Differential Equations

William F. Ames

Any equation involving derivatives is calledd#ferential equationlIf there is only one independent
variable the equation is termedadal differential equatioror anordinary differential equationlf there
is more than one independent variable the equation is cgdial differential equationlf the highest-
order derivative is theth then the equation is said tortih order. If there is no function of the dependent
variable and its derivatives other than the linear one, the equation is saitineabeOtherwise, it is
nonlinear.Thus @Ry/dx®) + a(dy/dX) + by = 0 is alinear third-order ordinary (total) differential equation.
If we replaceby with by?, the equation becomes nonlinear. An example of a second-order linear partial
differential equation is the famous wave equatd3o/§x?) —a?(d2u/ot?) =f(x). There are two independent
variablesx andt anda? > 0 (of course). If we repladéx) by f(u) (sayu® or sinu) the equation is
nonlinear. Another example of a nonlinear third-order partial differential equatigntisiu, = au,,,.
This chapter uses the common subscript notation to indicate the partial derivatives.

Now we briefly indicate some methods of solution and the solution of some commonly occurring
equations.

Ordinary Differential Equations

First-Order Equations

Thegeneralfirst-order equation ix, y, y) = 0. Equation capable of being written in either of the forms
y =f(X)g(y) or f{(X)g(y)y + F(X)G(y) = O areseparableequations. Their solution is obtained by usjhg
=dy/dx and writing the equations in differential formdygg(y) = f(x)dx or g(y)[dy/G(y)] = F(X)[dx/f(X)]
and integrating. An example is the famdagistic equation of inhibited growthdg/dt) = ay(1 —y). The
integral ofdyly(1 —y) =adtisy = 1/[1 + (y(;1 — 1¥29 for t = 0 andy(0) =y, (the initial state called
theinitial condition).

Equations may not have unique solutions. An exampjé #s2y*2 with the initial conditiony(0) =
0. One solution by separationyis= X2. But there are amfinity of others — namelyy,(x) = O for o
<x<ag and g—a)’fora< x < oo,

If the equatiorP(x, y)dy + Q(x, Y)dy = 0 is reducible to

dy _(oyo . dy _ Hax+by+c D

dx kO dx  Ha,x+by+c,

the equation is callditbmogenougearly homogeneous). The first form reduces to the separable equation
u + x(du/dx) = f(u) with the substitutioly/x = u. The nearly homogeneous equation is handled by setting
x=X+a, y=Y+ [, and choosingt andf so thata,a + b, + ¢, = 0 anda,a + b3 + ¢, = 0. If

a b

2

# 0 this is always possible; the equation becod¥gX = [a, + b,(Y/X)])/[a, + b,(Y/X)] and
by
b

i
the equation becomelv/dx = a, + b,(u + ¢,)/(ku + c,), with u = a,x + by. Lastly, any equation of the
form dy/dx = f(ax + by + ¢) transforms into the separable equatiordx = a + bf(u) using the change
of variableu = ax + by + c.

The general first-order linear equation is expressible in the yori(X)y = g(x). It has thegeneral
solution(a solution with an arbitrary constag)t

the substitutiorY = Xu gives a separable equation.

= 0 tlegx + by = k(a,x + b,y) and
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y(x) = expE—J' f(x) dx% +J'exp[ f(x)]a(x) dx@

Two noeworthy examples of first-order equations are asdie8:

1. An often-occurring nonlinear equation igtBernoulli equationy’ + p(X)y = g(xX)y*, with a real,
a # 0,a # 1. The transformatioz = y*@ converts the equation to the linefinst-order equation
Z + (1 -0)p(¥)z = (1 —o)o(x).
2. ThefamousRiccati equation,'y= p(X)y? + q(X)y + r(x), cannot in general be seld by inegration.
But some useful transformations are helpfile substitutiory =y, + u leads to the equatiaJ
— (2py, + Q)u = p?, which is a Bernoulli equation fai. The substitutimy =y, + v leads to
the equatiorv' + (2py, + q)v + p = 0, which is a linear first-order equation folOnce either of
these equations has beenved, the general solution of the Riccati equateyp+y, +uory =
yp+ Vvt
Second-Order Equations
The simplest of the second-order equatiang' i+ ay + by = 0 @, breal), with the initial conditions
Y(X0) = Yo Y (%) = ¥, or the boundary conditiongx,) = VY, Y(X) = y;. The general solution of the
equation is yen as folbws.
1. @-4H>0 MA=Y,(-a+.a2-4b), A,=%,(-a-a?-4b)
y = ¢, exp(AX) + ¢, exp(Ax)
22-H=0 A=X=-5 y=(@C+cX expArX
3. @2-H<0 A=Y, (-a+iVab-a?), \,=Y,(-a-i/db-a?),
i2=-1
With p = -a/2 andq =Y,  4b - a?,

y= clexp[(p + iq)x] +cC, exp[(p - iq)x] = exp( px)[ Asingx + Bcosgx|

The initial conditions or boundary conditions are usedvéduate the arbitrary constard, and
C, (or A and B).

Note that a linear problem with spied data may notdue a solutionThis is especially serious
if numerical methods are enggked without serious thought.

For example, considey” +y = 0 with the boundary conditioy(0) = 1 andy(m) = 1L The general
solution isy = ¢, sinx + ¢, cosx. The first conditiony(0) = 1 dgvesc, = 1, and the second condition
requires y(1) = ¢, sinTt + cosmor “1 = —1” which is acontradiction.

Example 19.5.1— The Euler Strut. When a strut of uniform construction is subject to a comjpess
load P it exhibits no trangerse displacement uh# exceeds some criticafalue P;. When this load is
exceededpuckling occurs and fge deflections are produced as a result of small load changes. Let the
rod of length be placed as stvn in Figure 19.5.1

FIGURE 19.5.1
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From the linear theory of elasticitfithosheiko), the trangerse displacemen(x) satisfies the linear
second-order equatioy” + (PY/El) = 0, whereE is the modulus of elasticity dr is the moment of
inertia of the strutThe boundary conditionse&y(0) = 0 andy(a) = 0. With k? = P/El the general solution
isy = ¢, sinkx + ¢, coskx The condition y(0) = 0 gvesc, = 0. The second conditionigesc, sinka =
0. Sincec, = 0 gves the tival solutiony = 0 we must &/e sinka = 0. This occurs foka = nr, n = 0,
1, 2, ... (these are catleigenvaluep The first nontivial solution occurs fon = 1 — that isk = Wa
— whereupory, = ¢, sin(iva), with arbitraryc,. SinceP = EIk? the critical compresge load isP, = El
T8/a?. This is thebuckling load The weakness of the linear theory isfagure to model the situation
whenbuckling occurs.

Example 19.5.2 — Some Sadble Nonlinear Equations Many physical phenomena are modeled using
nonlinear second-order equations. Some general caseiwemenhgre.

1. y" =f(y), first integral(y')? = 2 f(y) dy + ¢
2. f(x,¥,y") = 0. Sep =y and obtain a first-order equatif§r, p, dp/d® = 0. Use first-order methods.
3. fly, ¥, y") =0. Setp =y and thery" = p(dp/dy) so that a first-order equatid [y, p, p(dp/dy) =
0 for p as a function oy is obtained.
4. The Riccati transformation du/dx =wleads to the Riccati chain of equations, which linearize
by raising the ordeThus,

Equation in y Equation in u
1Ly +y?=1fx u" =f(xu
2.y + 3y + =) u” = f(u
YT+ +3Y) 4y =fx) U =f(qu

This method can be generalizedut = a(x)yu or u' = a(x)f(u)y.

Second-Order Inhomogeneous Equations

The general solution ay(X)y" + ay,(X)y’ + a,(X)y = f(x) isy = y(X) + y,(x) wherey,(X) is the general
solution of the homogeneous equation (with the right-hand side zetg) anthe particular iregral of

the equation. Construction of particularegrials can sometimes be done bgrirethod of undetermined
coefficients See Table 19.5.1This applies only to the linear constant ffioent case in which the
function f(x) is a linear combination of a polynomiakponentials, sines and cosines, and some products
of these functionsThis method has as its base the olméyn that repeated ffferentiation of such
functions gves rise to similar functions.

Table 19.51 Method of Undetermined Coefficients — EquatiorL(y) = f(x) (Constant Coefficients)

Terms in f(x) Terms To Be Included iny,(x)

1. Polynomial of @green (i) If L(y) containsy, try y, = apx" + a,x** + --- + g,
(i) If L(y) does not contaig and bwest-order devative isy®, try y, = ax™
+ ...+ a’lel
2. sin gx, cosgx (i) sin gx and/or cogyx are not iny,;; y, = B singx + C cosgx
(i) y4 contains terms of forne sin gx and/orx’ cosgx forr =0, 1, ...,m;
include iny, terms of the forna,x™* sin gx + a;x™* cosqx.

3. e (i) y4 does not contaig®; include Ae in y,,.
(ii) y containse™, xe*, ..., x"e®; include iny, terms of the fan Ax™le,
4. P singx, e cosqgx (i) y, does not contain these termsyjninclude Ae™ sin gx + Be™ cosgx.

(i) y,4 containsx’ € sin gx and/orx’ & cosgx r = 0,1, ...,minclude iny,,.
AX™IePX gin gx + BX™! ePx cosgx.

Example 19.5.3. Consider the equatioy’ + 3y’ + 2y = sin X. The characteristic equation of the
homogeneous equatidd + 3\ + 2 = 0 has theato rootsA; = -1 and\, = —2. Consequemntly, = c,e*
+ c,e. Since sin 2 is not linearly dependent on tleeponentials and since sBx repeats aftento
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differentiations, we assume a particular solution with undetermined coefficients of thg,@rm B

sin & + C cos X. Substituting into the original equation givesB-(2 6C) sin X + (6B — 2C) cos X

= sin . Consequently, —@+ 6C) = 1 and 8 — 2C = 0 to satisfy the equation. These two equations
in two unknowns have the soluti@h= —1/20 andC = -3/20. Hencg,, = —1/20 (sin & + 3 cos &) and

y = c,e* + c,e® — 1/20 (sin & + 3 cos R).

A general method for finding,(x) calledvariation of parametergses as its starting poiyi(x). This
method applies tall linear differential equations irrespective of whether they have constant coefficients.
But it assumeg,(X) is known. We illustrate the idea fa(x)y’ + b(X)y' + c(xX)y = f(x). If the solution
of the homogeneous equationyjgx) = c,@,(X) + c,@,(X), then vary the parametecs andc, to seek
Vo) asY,09) = W@ + L0990 Then Yy =u; ¢ + U, @, + U @ + Uy ¢, and choosey; ¢; +
u, @, = 0. Calculatingy; and setting in the original equation gaEsu @, + a(x) u,@, =f. Solving
the last two equations fou;  and gives  @ffwa, u, = @fiwa, wherew =@, ¢, — ¢, ¢, Z 0.
Integrating the general solution gives: ¢,@,(X) + c,@,(X) — {Jle.f())/wa} @,(xX) + [[(@,fiwa)dx]@,(X).

Example 19.5.4. Consider the equation$ — 4y = sinx/(1 +x?) andy, = c,e® + c,e>. With ¢, = €%,
and@, = e, w = 4, so the general solution is

e Le®sinx y e .esnx
4 J 1+x2 4 ) 1+x?

— 2X —2X _
y=ce” +c,e

The method of variation of parameters can be generalized as described in the references.
Higher-order systems of linear equations with constant coefficients are treated in a similar manner.
Details can be found in the references.

Series Solution

The solution of differential equations can only be obtained in closed form in special cases. For all others,
series or approximate or numerical solutions are necessary. In the simplest case, for an initial value
problem, the solution can be developed as a Taylor series expansion about the point where the initial
data are specified. The method fails in shregular case— that is, a point where the coefficient of the
highest-order derivative is zero. The general method of approach is calledliemius methad

To understand the nonsingular case consider the equatiory = x2 with y(2) = 1 andy'(2) = 2 (an
initial value problem). We seek a series solution of the fgpth=a, + a,(x — 2) +a,(x — 2¢ + ---. To
proceed, set 1 ¥2) =a,, which evaluates,. Nexty'(x) =a, + 2a,(x — 2) +---, s0 2 =y'(2) =a, ora,
= 2. Nexty'(X) = 2a, + 6a5(x — 2) +---. and from the equatioly; = x* —xy, soy'(2) =4 - 3(2) = 4
—2=2.Hence 2 =& or a, = 1. Thus, to third-ordey(x) = 1 + 2k — 2) + &k — 2¢ + R,(X), where the
remaindeR,(X) [(X — 2F/3]y"(€), where 2 <€ < x can be bounded for eaghy finding the maximum
of y"(X) = 2x —y —xy. The third term of the series follows by evaluatifiy =4 -1 -2 - 2 = -1,
SO @, = -1 ora; = —-1/6.

By now the nonsingular process should be familiar. The algorithm for constructing a series solution
about a nonsingular (ordinary) poigtof the equatiorP(X)y" + Q(X)y + R(X)y = f(X) (note thatP(x,)
# 0) is as follows:

1. Substitute into the differential equation the expressions

o )

y(x) = ian(x “%)\ Y= Z na,(x=x,)"",  y(x) = Z n(n-2a, (x-x,)"

n= n=.

2. ExpandP(x), Q(x), R(x), andf(x) about the poink, in a power series ink(— x,) and substitute
these series into the equation.
3. Gather all terms involving the same powerof-() to arrive at an identity of the fornx_,

AX=x)" = 0.
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4. Equate to zero each coefficigqgtof step 3.

5. Use the expressions of step 4 to determaine,, ... in terms ofa,, a, (we need two arbitrary
constants) to arrive at the general solution.

6. With the given initial conditions, determiiag anda,.

If the equation has a regular singular point — that is, a pgiat whichP(x) vanishes and a series
expansion is sought about that point — a solution is sought of theyfgrm (X — X,)" Z,_; a,(X — X)",
a8, # 0 and the index and coefficients, must be determined from the equation by an algorithm analogous

to that already described. The description of this Frobenius method is left for the references.

Partial Differential Equations

The study of partial differential equations is of continuing interest in applications. It is a vast subject,
so the focus in this chapter will be on the most commonly occurring equations in the engineering
literature — the second-order equations in two variables. Most of these are of the three basic types:
elliptic, hyperbolic, and parabolic.

Elliptic equationsare often calleghotential equationsince they occur in potential problems where
the potential may be temperature, voltage, and so forth. They also give rise to the steady solutions of
parabolic equations. They require boundary conditions for the complete determination of their solution.

Hyperbolic equationgire often calledvave equationsince they arise in the propagation of waves.
For the development of their solutions, initial and boundary conditions are required. In principle they
are solvable by the method of characteristics.

Parabolic equationare usually callediffusion equationbecause they occur in the transfer (diffusion)
of heat and chemicals. These equations require initial conditions (for example, the initial temperature)
and boundary conditions for the determination of their solutions.

Partial differential equations (PDEs) of the second order in two independent variabjearé of
the forma(x, Yu,, + b(x, Yu,,+ c(x, Yu,, = E(X, y, u, y, w). If E = E(x, y) the equation is linear; E
depends also on, u,, andu,, it is said to beguasilinear,and if E depends only om, y,andu, it is
semilinear Such equations are classified as followd?If 4ac is less than, equal to, or greater than
zero at some poink{y), then the equation is elliptic, parabolic, or hyperbolic, respectively, at that point.
A PDE of this form can be transformed into canonical (standard) forms by use of new variables. These
standard forms are most useful in analysis and numerical computations. ‘
For hyperbolic equations the standard formyjs= @u, u,, U, N, &), whereg /&, = (-b+ Vb? - 4ac)/ 2a,
andny/n, = (-b- Vb? —4ac)/2a. . The right-hand sides of these equations determine the so-called
characteristicsdy/dx)|, = (-b++ b? —4ac)/2a, (dyldX)|. = (-b- b?-4ac)/2a.

Example 19.5.5. Consider the equatioftu,, —x?u,, = 0,&,/&, = —x/y, n/n, = Xy, so& =y? —x2 andn
=y? + X2 In these new variables the equation becomes €u, —Nu)/2(&? —n?).

For parabolic equations the standard formds- @(u, U,, U, N, &) oru,, = U, y,, U, &, n), depending
upon how the variables are defined. In this &gk = -b/2aif a # 0, and§, /&, = -b/2c if ¢ # 0. Only
& must be determined (there is only one characteristic)nacan be chosen as any function that is
linearly independent .

Example 19.5.6. Consider the equatioytu,, — xyu,, + x2u,, + u, = 0. Clearly,b? — 4ac = 0. Neither
anorc is zero so either path can be chosen. \Bjith, = -b/2a = x/y, there result§ = x2 + y2. With n
= X, the equation becomes, = [2(€ + n)u; + u,l/(§ —n?).

Forelliptic equationghe standard form ig,, + Ugs = ®(U, W, U, 0, B), whereg andn are determined
by solving theg, andn equations of the hyperbolic system (they are complex) and takinf + &)/2,
B =N —-¢&)/2i(i2 = -1). Since& andn are complex conjugates, bathandf3 are real.

Example 19.5.7. Consider the equatioyfu,, + x?u,, = 0. Clearly,b? — 4ac < 0, so the equation is
elliptic. Theng, /&, = —ix/y, nJ/n, = ix/y, soa = (N +&)/2 =y? andP = (n —§&)/2i = x2. The standard form
IS Ugg + Ugg = —(Ug/200 + U/2B).
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Figure 19.5.2 Figure 19.5.3

Figure 19.5.4 Figure 19.5.5

FIGURE 19.5.2 to 19.% The mathematical equations used to generate these three-dimensional figures are worth
a thousand wordsThe figures stwn illustrate some of the nonlinear ideas of engineering, applied physics, and
chemisty. Figure 19.5.2represents a breather soliton surface for the sine-Gordon equgtiensinw generated

by a Backlund transformatiod single-soliton surface for the sine-Gordon equatign= sinw is illustrated in

Figure 19.5.3Figure 19.5.4epresents a single-soliton surface f@Taitzecia-Dodd-Bullough equation associated

with an inegrable anisentropic gas dynamics systeigure 19.5.5epresents a single-soliton Bianchi surface.

The solutions to the equations werveloped ly W. K. Schief and C. Rogers at the Center for Dynamical Systems
and Nonlinear Studies at the Ggia Institute & Technology and the Uversity of New Souh Wales in Syday,
Australia All of these three-dimensional projections were generated using the MAPLE software package. (Figures
courtesy of Schief and Rogers).

Methods of Solution

Separation ofariables. Perhaps the most elementary method for solving linear PDEs with homoge-
neous boundary conditions is the methédeparation of variablesro illustrate, considen, —u,, = 0,

u(x, 0) =f(x) (the initial condition) ad u(0, t) = u(1, t) = 0 fort > O (the boundary conditiong} solution

is assumed in “separated fdrm(x, ) = X(x)T(t). Upon substituting into the equation Wed T/T =

X'IX (whee T =dT/dtandX" =d>X/dx?). SinceT = T(t) andX = X(x), the ratio must be constant, and
for finiteness irt the constant must begaive, say A2 The solutions of the separated equatixh +

A2X = 0 with the boundary conditierX(0) = 0,X(1) = 0, aml T = -A?T areX = A sin AX + B cosAx

and T= Ce™, wheeA, B,andC are arbitrary constant$o satisfy the boundary conditiof{0) = 0,

B = 0. An infinite number ofvalues ofA (eigewalues), say\, = nri(n = 1, 2, 3, ...), permit all the
eigenfunctionsX, = b, sin A x to satisfy the other boundary conditi®(1) = Q The solution of the
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equation and boundary conditions (not the initial condition) is, by superposition), = Z‘::lbne‘”z”Zt
- sinntx (a Fourier sine series), where theare arbitrary. These values are obtained from the initial
condition using the orthogonality properties of the trigonometric function (Eg., mssinn x d x
is 0 form# n and isrtform=n# 0) to beb = 2]1 f(r) sinnTtr d r. Then the solution of the problem
isux,9 = 2 [2 Il f(ry sinnmtrdr]e “Tsinn Tt X, which is a Fourier sine series.

If f(x) is a piecewise smooth or a piecewise continuous function definacfok b, then its Fourier
series withina < x < b as its fundamental interval (it is extended periodically ouside that interval) is

f(x)~ia, + 2 a, cog 2nx/(b - a)] + b, sinf2nT/(b - a)]

where

a, = %bﬁia)g':f(x)cos{%m/(b—a)] dx, n=0,1, ..
_%72 i x)sin|2nmx/(b-a){ dx, n=
= b—a)gaf() [2nm/(b - @)] dx, 1,2

The Fourier sine series has= 0, and the Fourier cosine series has 0. The symbol ~ means that
the series converges () at points of continuity, and at the (allowable) points of finite discontinuity
the series converges to theerage valuef the discontinuous values.

Caution: This methodnly applies to linear equations with homogeneous boundary conditions. Linear
equations with variable coefficients use other orthogonal functions, such as the Besel functions, Laguerre
functions, Chebyshev functions, and so forth.

Some inhomogeneous boundary value problems can be transformed into homogeneous ones. Consider
the problermu, — u, = 0, 0< x< 1, 0<t < oo with initial conditionu(x, 0) =f(x), and boundary conditions
u(o, t) = g(t), u(1, t) = h(t). To homogenize the boundary conditionsuggf t) = w(x, 1) + x[h(t) — g(t)]

+ g(t) and then solvey,—w, = [g(t) - h(t)]x — g(t) with the initial conditionv(x, 0) =f(x) —x[h(0) —
g(0)] + g(0) andw(0,t) =w(1,t) =0

Operational MethodsA number of integral transforms are useful for solving a variety of linear prob-
lems. To apply the Laplace transform to the probilerm u,, = &(X) &(t), — 0 < x < 0, 0 < t with the
initial conditionu(x, 0") = 0, whered is the Dirac delta function, we multiply kgt and integrate with
respect ta from 0 tooo. With the Laplace transform ofXx, ) denoted byJ(x, 9 — that is,U(x, 9 =

J5 estu(x, §) dt — we havesU — U, = §(x), which has the solution

U(x,s) = A(s)e™"® + B(s)e*’®  forx>0
U(x,s) = C(s)e™' + D(s)e*'®  forx <0

Clearly, B(s) = C(s) = 0 for bounded solutions a¢ |- «. Then, from the boundary conditidd(0*, s)
—U(0, s) = 0 and integration asU — U =9(x) from O to 0" givesU,(0*, s) —U(0, s) = -1, soA =
D =1/2\s. HenceU(x, § = (1/2 . s)e” Y94 and the inverse igx, ) = (1/216) [, eU(x, 9 ds where
I is a Bromwich path, a vertical line taken to the right of all singularitie¢$ of the sphere.

Similarity (Invariance).This very useful approach is related to dimensional analysis; both have their
foundations in group theory. The three important transformations that play a basic role in Newtonian
mechanics are translation, scaling, and rotations. Using two independent variaiolés and one
dependent variable = u(x, 1), thetranslation groupis X =x+aa, t =t+pa, U =u+ ya; thescaling
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groupis X =a%, t =aft, and U =aw; therotation groupis X =x cosa +tsina, t =t cosa—x
sina, U =u, with a nonnegative real numberimportant in which follows are thavariantsof these
groups. For the translation group there arewox —At, A = a/B, f(n) =u—¢et, e =y/Porf(n) =u—
0x, 8 = y/a; for the scaling group the invariants aye= x/t® (or t/x#®) andf(n) = u/t¥® (or u/x¥); for
the rotation group the invariants aye= X2 + t2 andu = f(n) = f(2 + t?).

If a PDE and its data (initial and boundary conditions) are left invariant by a transformation group,
then similar (invariant) solutions are sought using the invariants. For example, if an equation is left
invariant under scaling, then solutions are sought of the éignt) = 8 f(n), n = xt*/B or u(x, t) = xv@
f(txP); invariance under translation gives solutions of the fofnt) = f(x — At); and invariance under
rotation gives rise to solutions of the fougx, t) = f(2 + t?).

Examples of invariance include the following:

1. The equatiom,, + u,, = O is invariant under rotation, so we search for solutions of thederm
f(@ + y?). Substitution gives the ODE +nf" = 0 or if ')’ = 0. The solution isi(x,t) = cInn
= ¢ In(x? + t?), which is the (so-called) fundamental solution of Laplace’s equation.

2. The nonlinear diffusion equatian= (u"uy), (n > 0), 0< x, 0< t, u(0, t) = ct" is invariant under
scaling with the similar fornu(x, t) = t" f(n), n = xt ™72 Substituting into the PDE gives the
equationff')’ + ((n + 1)/2nf —nf = 0, withf(0) =c andf(e) = 0. Note that the equation is an ODE.

3. The wave equation,, — u, = 0 is invariant under translation. Hence, solutions exist of the form
u = f(x — At). Substitution give$"(l — A?) = 0. Hence) = +1 orf is linear. Rejecting the trivial
linear solution we see that=f(x —t) + g(x + t), which is the general (d’Alembert) solution of
the wave equation; the quantities-t = a, x + t = 3 are the characteristics of the next section.

The construction of all transformations that leave a PDE invariant is a solved problem left for the
references.

The study of “solitons” (solitary traveling waves with special properties) has benefited from symmetry
considerations. For example, the nonlinear third-order (Korteweg-de Vries) equationy, — au,,, =
0 is invariant under translation. Solutions are sought of the dormi(x — At), andf satisfies the ODE,
inn =x-—At, =Af" +ff' —af”=0.

Characteristics.Using the characteristics the solution of the hyperbolic problemu,, = p(x, t), — o
<X <o, 0<t, UX 0) =f(x), u(x, 0) =h(x) is

x+(t-1 X+t
X—

u(x,t) = %I; er’x_(t_I))p(a,r) dé + %I th(z) dE +4[ f(x+1) + f(x - 1)]

The solution ofu, — u, = 0, 0 X <o, 0< t <00, U(X, 0) = 0,u(x, 0) =h(x), u(0, t) = 0,t > 0 isu(x,

t) =, [%, h(g) dE.
The solution ofu, — U, = 0, 0 x <0, 0t <, U(X, 0) = 0,u(x, 0) = 0,u(0,t) =g(t),t>0is

K] ift<x

uix) = Eg(t -x) ift>x

From time to time, lower-order derivatives appear in the PDE in use. To remove these from the
equationu, —u,, + au, +bu + cu = 0, whereg, b, andc are constants, sét=x +t, p =t —x, whereupon
uex, ) = ul(€ — )2, € + W/2] = U(E, W), whereUg, + [(b + a)/4] Ug + [(b —a)/4] U, + (c/4)U = 0.
The transformatiotJ(€, ) = W(E, 1) exp[-b —a)&/4 — b + a)u/4] reduces to satisfyind, + AW =
0, whereA = (@ —b? + 4c)/16. If A # 0, we lose the simple d’Alembert solution. But the equation for
W is still easier to handle.
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In linear problems discontinuities propagate along characteristics. In nonlinear problems the situation
is usually different. The characteristics are often used as new coordinates in the numerical method of
characteristics.

Green’s Function.Consider the diffusion problem — u,, = 8(t)d(x — &), 0< x <o, & > 0,u(0, t) = O,

u(x, 0) = 0 p(oo, t) = u(eo, 0) = 0], a problem that results from a unit source somewhere in the domain
subject to a homogeneous (zero) boundary condition. The solution is cé@iliegtris fuznction of the

first kind. For this problem there 8,(x, &, t) = F(x —&, t) —F(x + &, t), whereF(x, t) = e/ 41t is

the fundamentalinvariant )solution More generally, the solution of —u,, = d(x —§) o(t — 1), § > 0O,

T > 0, with the same conditions as before, is the Green’s function of the first kind.

=1 (-8 alt—r) _ (8 a-r) O
G(x&t-T1)=——— e
l ) \ 4T[(t—T)% g

for the semi-infinite interval.
The solution ofu, —u,, = p(x, 1), 0 X< o0, 0< t < 00, with u(x, 0) = 0,u(0,t) = 0,t > 0 isu(x, t) =
Jodt Jo pE, T)Gy(x, &, t —T)] d &, which is a superposition. Note that the Green’s function and the
desired solution must both satisfy a zero boundary condition at the origin for this solution to make sense.
The solution ofu, —u,, = 0, 0S x <0, 0< t <00, U(X, 0) =f(x), u(0,t) = 0,t > 0 isu(x,t) = [;
fE)Gy(x, & 1) d &.
The solution oy, —u,, = 0, 0 X< 0, 0<t <00, U(X, 0) = 0,u(0, t) =g(t), t >0 (nonhomogeneous)
is obtained by transforming to a new problem that has a homogeneous boundary condition. Thus, with
w(x, t) = u(x, t) — g(t) the equation fow becomesw, —w,, = —g(t) —g(0) 3(t) andw(x, 0) = 0,w(0,
t) = 0. UsingG, above, we finally obtain(x, t) = (x/~ 4m) [} g(t - 1)e™ '* /1% dr.
The Green'’s function approach can also be employed for elliptic and hyperbolic problems.

Equations in Other Spatial VariableIhe sperically symmetric wave equatign+ 2u,/r —u, = 0 has
the general solution(t, t) = [f(t —r) + g(t + r)]/r.
The Poisson-Euler-Darboux equation, arising in gas dynamics,

U +N(u, +u))/(r+9)=0
whereN is a positive integee 1, has the general solution

o™t O f(r) %+ ot O g(s)
o™t E(r +9)" g os't E(r +9)"

g
u(r,s)=k+ O
0
Here,k is an arbitrary constant aficindg are arbitrary functions whose form is determined from the
problem initial and boundary conditions.

Conversion to Other Orthogonal Coordinate Systelret. (X2, X2, X3) be rectangular (Cartesian) coordi-
nates andu, u?, ud) be any orthogonal coordinate system related to the rectangular coordingtes by
Xt w3, W), i =1, 2, 3. With d9)? = (dx)? + (d@)? + ()2 = gy, (du)? + g,,(dP)? + g5(dif)?, where

g = (@x4ou)? + (0x?/ou)? + (0x3/au)2. In terms of these “metric” coefficients the basic operations of
applied mathematics are expressible. Thus (@ithg,,0,,0s5)

dA = (911922)]/2 du® du?; dv = (911922933)]/2 dut du? du®
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- & 00, & 09, & 09
T () 00t (g) 0 (g ) o

(3 are unitvectors in direction);

- .00 2 0 12
divE=g M%ﬁ[(gzzg&%) El] + ﬁ[(gngsa) E,

] (CEMREE

[hereE = (Ey, E,, Ej);
et OV R (R S (R
O O B (C Y =
I B )

3 12 0
divgrady = 0%y = Laplacianof ¢ = g2 9 %a—wm

£ 0u' g, ou' [
Table 19.5.hows some coordinate systems.
Table 19.52 Some Coordinate Systems
Coordinate System Metric Coefficients
Circular Cylindrical
X =1 cos6 ut=r g,=1
y=rsin® w=0 Upo=1?
z=z w=z 0= 1
Spherical
X =r siny cos6 ut=r gn=1
y=rsinysing w=y 0= 12
z=r cosy w=0 Qs3=Tr2sirt Y
Parabolic Coordinates
X = v cosO ul=p O = M2 + V2
y=pvsind w=v Opp = M2 + V2
z=1/2 (2 -v? w=0 O35 = M2V2

Other metric cofficients and so forth can be found in Moon and
Spencer [1961].
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19.6 Integral Equations

William F. Ames

Classification and Notation

Any equation in which the unknown functiox) appears under the integral sign is callednséegral
equation If f(x), K(x, 1), a, andb are known then the integral equation tﬂorjg K(x, 1), u(t) dt =f(x) is
called alinear integral equation of the first kind of Fredholm typéx,K) is called thekernel function
of the equation. Ib is replaced by (the independent variable) the equation is an equatidblterra
type of the first kind.

An equation of the fornu(x) = f(x) + A fg K(x, Yu(t) dt is said to be a linear integral equation of
Fredholm type of the second kirlflb is replaced by it is of Volterra type If f(x) is not present the
equation is homogeneous.

The equatiorp(x) u(x) = f(x) + A fg"'x K(x, Yu(t) dt is thethird kind equatiorof Fredholm or \Volterra
type. If the unknown functiom appears in the equation in any way other than to the first power then
the integral equation is said to henlinear Thus,u(x) = f(x) + [2K(x, ?) sinu(t) dt is nonlinear. An
integral equation is said to Istngular when either or both of the limits of integration are infinite or if
K(x, ) becomes infinite at one or more points of the integration interval.

Example 19.6.1.Consider the singular equation&) = x + [ sin & ) u(t) dt andf(x) = [5 [u(t)/(x —
t)?] dt.

Relation to Differential Equations
TheLeibnitz rule(d/dx) [°® F(x, f) dt [°%) (9F/ax) dt + F[x, b(x)](db/dx) — F[x, a(X)] x (da/dx) is useful

a(x) a(x)

for differentiation of an integral involving a parameteiir( this case). With this, one can establish the
relation

n times

This result will be used to establish the relation of the second-order initial value problem to a \Volterra
integral equation.
The second-order differential equatigiix) + A(X)y'(x) + B(x)y =(x), y(a) =¥, Y () = Y, is equivalent
to the integral equations
y(x) = —J’ {A(t) +(x - t)[B(t) - A’(t)]} y(t) dt +J’ (x=t)f(t) dt + [A(a)y0 + y(’)](x -a)+y,
a a
which is of the typex)y = [ K(x, Dy(t) dt + F(xX) whereK(x, §) =  —x)[B(t) — A'(t)] — A(t) andF(x)

includes the rest of the terms. Thus, this initial value problem is equivalent to a Volterra integral equation
of the second kind.

Example 19.6.2. Consider the equatioyf + x2y' + xy = x, y(0) = 1,¥'(0) = 0. HereA(x) = x2, B(x) =
x f() =x,a=0,y, =1, y; = 0. The integral equationy§) = [;t(x — 2)y(t) dt + (x¥/6) + 1.

The expression fdy(x) can also be useful in converting boundary value problems to integral equations.
For example, the problegi(x) + Ay = 0,y(0) = 0,y(a) = 0 is equivalent to the Fredholm equatygx)
= N [EK(x, Yy(t) dt, whereK(x, §) = (t/a)(a —x) whent < x andK(x, ) = (¥/a)(a —t) whent > x.

In both cases the differential equation can be recovered from the integral equation by using the Leibnitz
rule.
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Nonlinear differential equations can also be transformed into integral equations. In fact this is one
method used to establish properties of the equation and to develop approximate and numerical solutions.
For example, the “forced pendulum” equatigfx) + a2 siny(x) = f(x), y(0) =y(1) = 0 transforms into
the nonlinear Fredholm equation.

y(x) =J; K(x,t)[azsiny(t) - f(t)] dt
with K(x, t) = x(1 —t) for 0 <x <tandK(x, t) =t(1 —x) fort <x < 1.

Methods of Solution

Only the simplest integral equations can be solved exactly. Usually approximate or numerical methods
are employed. The advantage here is that integration is a “smoothing operation,” whereas differentiation
is a “roughening operation.” A few exact and approximate methods are given in the following sections.
The numerical methods are found under 19.12.

Convolution Equations

The special convolution equatig(x) =f(x) + A [ K(x—t)y(t) dtis a special case of the Volterra equation
of the second kind(x —t) is said to be aonvolution kernelThe integral part is the convolution integral
discussed under 19.8. The solution can be accomplished by transforming with the Laplace transform:

LIy(¥)] = LIF()] + ALY(ILIK(X)] or y(x) = LY L[f())/(1 — AL[K(X)])}-

Abel Equation

The Volterra equatiof(x) = [; y(t)/(x —t)* dt, 0 <a < 1 is the (singular) Abel equation. Its solution is
y(x) = (sinam/m)(d/dx) [; F(t)/(x —t)+adt.

Approximate Method (Picard’s Method)

This method is one of successive approximations that is described for the egatom(x) + A [}
K(x, t)y(t) dt. Beginning with an initial guesg(t) (often the value at the initial poia) generate the
next approximation witly,(x) = f(x) + [ K(x, t)y,(t) dt and continue with the general iteration

v, (x) = £(x) + A I:K(x,t)yn_l(t) dt

Then, by iterating, one studies the convergence of this process, as is described in the literature.

Example 19.6.3. Lety(x) = 1 +[j xt[y()]? dt, y(0) = 1, Withy,(t) = 1 we findy,(x) = 1 +[ixt dt=1
+ (¢/2) andy,(x) = 1 +[;xt{1 + (¥2)dt, and so forth.
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19.7 Approximation Methods

William F. Ames

The termapproximation methodssually refers to an analytical process that generates a symbolic
approximation rather than a numerical one. Thus,Xl++?/2 is an approximation o for smallx.
This chapter introduces some techniques for approximating the solution of various operator equations.

Perturbation

Regular Perturbation
This procedure is applicablegsomeequations in which a small parametegppears. Use this procedure

with care; the procedure involves expansion of the dependent variables and data in a power series in the
small parameter. The following example illustrates the procedure.

Example 19.7.1. Consider the equatioyf + ey +y = 0,y(0) = 1,y'(0) = 0. Writey(x; €) = yo(X) +
eyi(X) + €2y,(X) + ---, and the initial conditions (data) become

yO(O) + Eyl(o) + £2y2(0) +.-=1
y;(0) +y;(0) + €2y,(0) +---=0

Equating like powers of in all three equations yields the sequence of equations

0): vy +v =0 y,(0)=1 y(0)=0

ofel):yi+y, =¥ %(0)=0 y(0)=0

The solution fory, is y, = cosx and using this foy, we findy,(X) = 1/2 (sinx — x cosx). Soy(x; €) =
cosx + g(sin x —x cosx)/2 +O(g?). Appearance of the terrcosx indicates &ecular ternthat becomes
arbitrarily large ax — . Hence, this approximation is valid only for< 1/ and for smalk. If an
approximation is desired over a larger range of x then the method of multiple scales is required.

Singular Perturbation

The method of multiple scald@s a singular method that semetimesiseful if the regular perturbation

method fails. In this case the assumption is made that the solution depeands(onmore) different

length (or time) scales. By trying various possibilities, one can determine those scales. The scales are
treated as dependent variables when transforming the given ordinary differential equation into a partial
differential equation, but then the scales are treated as independent variables when solving the equations.

Example 19.7.2. Consider the equaticy” +Yy = 2,y(0) = 0,y(1) = 1. This is singular since (with

= 0) the resulting first-order equation cannot satisfy both boundary conditions. For the problem the
proper length scales ave= x andv = x/e. The second scale can be ascertained by substitikrigr

x and requiringgy” andy' to be of the same order in the transformed equation. Then

d_oddu,dodv_o0 10

dx dudx avdx odu €av

and the equation becomes
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Bl 12h-
u € ov Y
With y(X; €) =yy(u, V) + &y;(u, V) + €%y,(u, V) + --- we have terms

o) %

(actually ODEs with parameter u)

d%y, oy 9%y, oy
0(?): 21+ 1 =-p7 %0 T
(8) v’ v oudv  du

ofe?): Yy (Mo 0N OOy
Tov: o ov dudv du  ou?

Thenyy(u, V) = A(u) + B(u)e¥ and so the second equation becowdgov? + dy,/ov = 2 —A'(u) +
B'(u)e, with the solutiony,(u, V) = [2 —A'(u)]Jv + vB' (u)e + D(u) + E(u)e™. HereA, B, D andE are
still arbitrary. Now the solvability condition — “higher order terms must vanish no slower {a®)
than the previous term” (Kevorkian and Cole, 1981) — is usedy,Rorvanish no slower thay we
must have 2 A'(u) = 0 andB'(u) = 0. If this were not true the termsynwould be larger than those
iny, (v> 1). Thusyy(u, v) = (2u + A)) + B,e, or in the original variableg(x; €) = (2x + A)) + Be**
and matching to both boundary conditions giyes €) = 2x — (1 —e>®).

Boundary Layer Method

The boundary layer method is applicable to regions in which the solutrapidy varying.See the
references at the end of the chapter for detailed discussion.

Iterative Methods

Taylor Series

If it is known that the solution of a differential equation has a power series in the independent variable
(t), then we may proceed from the initial data (the easiest problem) to compute the Taylor series by
differentiation.

Example 19.7.3. Consider the equatiom®/dt) = —x — x?, x(0) = 1,x(0) = 1. From the differential
equationx”(0) = -2, and, sincg” = x' —2xX, X"(0) = -1 -2 = -3, so the four term approximation for
X(t) =1+t - (2%2!) — (2¥3!) = 1 + t —t2 —t32. An estimate for the error ait=t,, (see a discussion
of series methods in any calculus text) is not greater thefdt|,,[(t)%4!], 0<t <t,.

Picard’s Method

If the vector differential equatioxi = f(t, ), x(0) given, is to be approximated by Picard iteration, we
begin with an initial guessyx x(0) and calculate iterativelyx/ #t, x_,).

Example 19.7.4. Consider the equatiott = x + 2,y =y —x3, x(0) = 1,y(0) = 2. Withx, = 1,y, = 2,
X =5y =1s0¢=5+1y =t+ 2, sincex(0) = 1,y,(0) = 2 fori = 0. To continue, use/,;, *
+ y3, ¥y, =Yy — x. A modification is the utilization of the first calculated term immediately in the
second equation. Thus, the calculated valug ef5t + 1, when used in the second equation, giyes
=yo— (B8 + 1 =2-(12% + 732 + 15 + 1), soy, = 2 — (125%4) — 25% — (18%/2) —t + 2. Continue
with the iteration X, = + Y%, Y, =V — .

Another variation would bex',; %.; + )% V1= Y — &%

© 1999 by CRC Press LLC



19-62 Section 19

References

Ames W. F. 1965.Nonlinear Partial Diffeential Equations in Science and Engineeribglume |I.
Academic Press, Boston, MA.

Ames W. F. 1968.Nonlinear dinary Diffeaential Equations infransport RocessesAcademic Press,
Boston, MA.

Ames W. F. 1972.Nonlinear Partial Diffeential Equations in Science and Engineerikglume 1.
Academic Press, Boston, MA.

Kevorkian, J. and Cole, J. D. 19&erturbation MethodsniApplied MathematicsSpringe, New York.

Miklin, S. G. and Smolitski K. L. 1967 Approximate Methods for Solutions of Diffatial and Integral
Equations Elsevier, New York.

Nayfeh A. H. 1973.Perturbation MethodsJom Wiley & Sons, New York.

Zwillinger, D. 1992.Handbook of Diffeential Equations2nd ed Academic Press, Boston, MA.

19.8 Integral Transforms

William F. Ames

All of the integral transforms are special cases of the equafs) = Ig K(s, 9f(t)d t, in whichg(s) is
said to be théransformof f(t), andK(s, 9 is called thekernelof the transformTable 19.8.1 stws the
more importankernels and the corresponding intds @, b).

Details for the first three transforms listedTiable 19.8.1are gven hereThe details for the other
are found in the literature.

Laplace Transform

The Laplace transformfd(t) is g(s) = [, estf(t) dt. It may be thought of as transforming one class of
functions into anothe The adiantage in the operation is that under certain circumstances it replaces
complicated functions by simpler on@he notationL[f(t)] = g(s) is called thedirect transformand
Lg(s)] = f(t) is called thanverse transformBoth the direct andhverse transforms arehiaated for

many often-occurring functions. In genéta¥{g(s)] = (1/2 1) jgf:: eg(s) ds and toevaluate this irggral

requires a kowledge of compx variables, the theory of residues, and contowagmation.

Properties of the Laplace Transform
Let L[f(t)] = g(s), L™{g(s)] = f(1).

1. The Laplace transform may be applied to a fumcfig) if f(t) is continuous or piewise
continuous; ift"|f(t)| is finite for allt, t - 0, n < 1; and ife®f(t)| is finite ast —» o for some
value ofa, a > 0.

L andL™ are unique.

L[af(t) + bh(t)] = aL[f(t)] + bL[h(t)] (linearity).

L[e*f(t)] = g(s —a) (shift theorem).

5. L[(-t)4(t)] = d'g/ds; k a posiive integer.

Example 19.8.1. L[sina t] = [jestsinatd t=al/(s® +a?), s> 0. By property 5,

AW

J' eStsnat dt = L[tsinat] = 22352
0 s +a
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Table 19.81 Kernels and Intervals d Various
Integral Transforms

Name d Transform (a, b K(s, 9
Laplace (0, ) e
Fourier (0, o) /1 e

J2n
Fourier cosine (0, ) 12 cosst
(R}
Fourier sine (0, ) ) E sinst
\'m
Mellin (0, ) tst
Hankel (0, ) td(sh, vz -3

L[ f(t)] = sL{ £(t)] - £(0)
L[ f(t)] = s°L £(t)] - sf(0) - £'(0)

O] = "L 1(0)] - 57*1(0) =+~ s " (0) - 1" (0)
In this property it is apparent that the initial data are automatically brought into the computation.
Example 19.8.2. Sohvey" +y =¢€, y(0) = 1,y'(0) = 1. Now L[y"] = s2L[y] — s0) —y'(0) =<L[y] —
s— 1 Thus, using the linear property of the transform (propertg?Bly] + L[y] —s— 1 =L[€] = 1/(s
— 1). Therefore L[y] =¥/[(s— 1)& + 1)].
With the notation$'(n + 1) = [7 x"e> dx (gamma function) and,(t) the Bessel function of thrst
kind of ordern, a short table of Laplace transforms igeg in Table 19.8.2

7 La't (1) th:%L[f(t)] +gJ’0f(t) .

Example 19.8.3. Find f(t) if L[f(t)] = (1/A)[1/(* — a?)]. L[1/a sinha 1] = 1/(s* — &). Thereforef(t) =
Jo[JpLsinhatd{d t= 1/(sinh a t)/a —t].

L EfE—I)E: fg(s) ds; L g&ﬁz QQ(S) (ds)"

k integrals

Example 19.8.4. L[(sina t)t] = [TL[sina d s= [7[a d ¢(s* + @?)] = cot¥(s/a).

9. The unit step function @ —a) = 0 fort <a and 1 fort > a. L[u(t —a) = e?Ys.
10. The unit impulse functions &(@) = u'(t —a) = 1 att = a and 0 elewhere.L[u'(t —a) = 2.
11 LYe?g(s)] = f(t —a)u(t —a) (second shift theorem).
12. If f(t) is periodicof periodb — that isf(t + b) = f(t) — thenL][f(t)] = [1/(1 —e™®9)] x Ig esf(t) dt.

Example 19.8.5. The equatia 9%y/(0tox) + dy/ot + dy/ox = 0 with @y/0x)(0, X) = y(0, X) = 0 andy(t,
0) + @y/at)(t, 0) =5(0) (see property 10) is s@d by using the Laplace transformyowith respect to
t. With g(s, X = [ ey(t, x) dt the transformed equation becomes
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Table 19.8.2 Some Laplace Transforms

f(t) g(s) f(t) g(s)
s
1 % e(l-at -
. . n! tsinat S
tn, nis a + integer Py
g st 2a (s2 +a2)2
t", n # a + integer I'(r:l) Z—:Lzsinatsinhat 7 +S4 7
st a s a
3
cosat % cosa tcosha t . S .
s*+a s” +4a
. a 1,. . s?
sinat — —(sinhat +sinat
s> +a? 2a( ) st -at
cosha t s 4 (coshat + cosat) s
s2 — a2 st -at
sinha t 5 a 5 snat tan 2
s?-a t s
1
e L 3@y ‘
fa2 2
S+a \s®+a
s+b 3, (at) .
ebtcosat R N —
(s+b)* +a? a ot %kesz+a2 +sEr
. a 1 _
e sinat — J (2 at) Zeds
(s+b)* +a? o\ s
dg 0 0
s99- Y (0,x)+sg-y(0.x) + 2 =0
ox 0x 1)

or
09, ., _0y _
(s+15) +s9= (0.0 +¥(00 =0

The second (boundary) condition givgs, 0) +sg(s, 0) —y(0, 0) = 1 org(s, 0) = 1/(1 +s). A solution
of the preceding ordinary differential equation consistent with this conditggs, i§ = [1/(s + 1)]e (D),
Inversion of this transform givegt, x) = e ™I, (2/ tx), wherel, is the zero-order Bessel function of
an imaginary argument.

Convolution Integral
The convolution integralfaltung of two functionsf(t), r(t) is x(t) = f(t)*r(t) = [ f(Drt-1) d .
Example 19.8.6. t* sint= [ Tsint-1)dT =1t - sint.

13. L[f(t)]L[h(®)] = L[f(t) * h(t)].

Fourier Transform

The Fourier transformis given byF[f(t)] = (1/2m)[®_f(t)e’s d t = g(s) and itsinverseby F-g(s)]
= @/ y2m)[=, g(s)estd t =f(t). In brief, the condition for the Fourier transform to exist is tffatf(t)| |
d t < o, although certain functions may have a Fourier transform even if this is violated.
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Example 19.8.7. The function f(t) = 1 for —a<t < aand = 0 elawhere has

a a a a ;
Ff(t)] = e™dt=[ e dt+ [ e™ dt=2[ cosstat= 2sinsa
-a 0 0 0 S

Properties of the Fourier Transform
Let F[f(t)] = o(s); F{9(9)] = f(1).

1. F[f™®)] = (i s)" F[f(t)]

F[af(t) + bh(t)] = aF[f(t)] + bF[h(t)]

FIf-0] = 9(-9)

F[f(at)] = 1/ag(s/a), a>0

Fle™f(t)] = g(s + w)

FIf(t +t)] = €% g(s)

F[f(t)] = G(i s) + G(di ) if f(t) = f(-t)(f(t) even)
F[f(t)] = G(i s) — G(—i 9) if f(t) = —f(—t)(f odd)

NooarwWDN

where G(s) = L[f(t)]. This result albws the use of the Laplace transform tables to obtairFteier
transforms.

Example 19.8.8. Find F[e?"] by property 7 The terme=t is even. SoL[e®] = 1/(s + a). Therefore,
Fle®t = 1/(i s+ a) + 1/(4 s + a) = 2a/(s* + &).

Fourier Cosine Transform

The Fourier cosine transfornis gven byF [f(t)] = g(s) = +/(2/m) [, f(t) coss t d tand itsinverseby
Fc'1 [9(9)] = f(t) = (2/m) [ 9(s) coss t d s The Fourier sine transform Fis obtainable by replacing
the cosine by the sine in thecab integrals.

Example 19.8.9. F[f(t)], f(t) = 1 for 0 <t <aand 0 fora <t <. F [f()] = (2/m) [jcoss td t=
~(2/m) (sina 9fs.

Properties of the Fourier Cosine Transform
FLf(®] = 9(9).

1. FJaf(t) + bh(t)] = aF[f(t)] + bF[h(t)]

2. FJf(at)] = (1/a) g (Ja)

3. F/f(at) cosbf] = 1/2a[g ((s + b)/a) + g((s—b)/a)], a, b>0
4. F[emf()] = (= 1p(drg)/(d )

5. R ()] = (= 1p(d)/(d ) FJHD)]

Table 19.8.3resents somEourier cosine transforms.

Example 19.8.10. Thetemperatue 0 in the semiinfinite rod & x <« is determined by the ffierential
equatia 06/0t = k(026/0x?) and the conditio® = 0 whent = 0,x = 0; 36/0x = -4 = constant wher =
0, t > 0. By using thd-ourier cosine transform, a solution may be fousfl(a, ) = (2u/m) [, (cos px'p)
(1-e*) dp
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Table 19.8.3 Fourier Cosine Transforms

g(s)
(t) Jm
t 0<t<10O 1
2-t 1<t<2% —[2coss~1-cos2s]
0 2<t<of] S
t71/2 T[112(S)71/2
0 O<t<ap
1/2(Q)-1/2 _qj
(t—a)'m a<t<ooB T3(s)~2[cosa s—sina g
(2 +ay)? %m—le—as
a
e a>0 _Z
$? +a’
_ 2
eialz, a>o0 %T[Wa ]/2e s°/4a
. Ov2 s<a
sinat a>0 En/4 s=a
EO s>a

Nixon, F. E. 1960Handbook of Laplace TransformBrentice-Hall, Englewood Cliffs, NJ.
Sneddon, |. 1951Fourier TransformsMcGraw-Hill, New York.
Widder, D. 1946The Laplace TransfornBrinceton University Press, Princeton, NJ.
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The references citing G. Doetsttandbuch der Laplace Transformatiorgls. I-1V, Birkhauser, Basel,
1950-1956 (in Germargnd B. A. Ditkin and A. P. Prodnikatlandbook of Operational Math-
ematics,Moscow, 1965 (in Russian) are the most extensive tables known. The latter reference is
485 pages.
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19.9 Calculus of Variations

William F. Ames

The basic problem in thealculus of variationss to determine a function such that a cerfaictional,
often an integral involving that function and certain of its derivatives, takesasimum or minimum
values As an example, find the functigfx) such thay(x,) =y, y(x,) =V, and the integral (functional)
| = 211[XZ y[1 +y)q¥2d xis a minimum. A second example concerns the transverse deform@tion
t) of a beam The energy functiorat j IO [1/2 p (Quldt)? — 1/2 El (02u/0x?)? + fu] d x d tis to be
minimized.

The Euler Equation

The elementary part of the theory is concerned witle@ssarcondition (generally in the form of a
differential equation with boundary conditions) that the required function must satisfy. To show math-
ematically that the function obtained actually maximizes (or minimizes) the integral is much more
difficult than the corresponding problems of the differential calculus.

Thesimplest casés to determine a functiop{x) that makes the integrba& IZ F(x, y, y) dxstationary
and that satisfies the prescribed end condiiogs=y, andy(x,) =v,. Here we suppodehas continuous
second partial derivatives with respectxtoy, andy' = dy/dx. If y(x) is such a function, then it must
satisfy theEuler equation(d/dxX)(dF/a0y’) — (@F/dy) = 0, which is the required necessary condition. The
indicated partial derivatives have been formed by treatiggandy’ as independent variables. Expanding
the equation, the equivalent forfy,y" + F,y' + (F,, —F,) = 0 is found. This is second orderyin
unlessF,, = (@°F)/[(dy')] = 0. An alternative form Y/[d/dx(F — @F/dy’)(dy/dx)) — @F/0x)] = O is
useful. Clearly, ifF does not involvex explicitly [(0F/0x) = 0] a first integral of Euler's equation ks
— Y (0F/dy') = c. If F does not involve explicitly [(0F/dy) = 0] a first integral isaF/dy') = c.

The Euler equation for = 2rt [z y[1 + ()72 dx, y(x)) = Y1, Y(%) =¥, is @dx)[yy/[1 + ()] -
[1 + (¥)]¥2 = 0 or after reductiony’ — (/)2 — 1 = 0. The solution ig = ¢, coshi/c, + c,), wherec,
andc, are integration constants. Thus the required minimal surface, if it exists, must be obtained by
revolving a catenary. Can) andc, be chosen so that the solution passes through the assigned points?
The answer is found in the solution of a transcendental equation that has two, one, or no solutions,
depending on the prescribed valueyoéndys,.

The Variation

If F=F(x,Y,Y), with x independent ang = y(x), then thefirst variation dF of F is defined to béF

= (0F/0x) dy + (OF/dy) &y anddy' =& (dy/dx) = (d/dX) (dy) — that is, they commute. Note that the first
variation,dF, of a functional is a first-order change from curve to curve, whereas the differential of a
function is a first-order approximation to the change in that function alpadiaular curve.The laws

of o are as followsd(c,F + ¢,G) = ¢,0F + ¢c,0G; 8(FG) = FoG + GoF; &(F/G) = (GoF — F3G)/G?; if x

is an independent variabl@ = 0; if u = u(x, y); (0/0x)(du) = d(0u/dx), (3/dy) (du) = d(du/dy).

A necessary condition that the mtegfatj F(x, vy, y) dx be stationary is that its (first) variation
vanish — that isdl = 6]*2 F(x, y, y) dx= 0. Carrylng out the variation and integrating by parts yields
of &l :J'Z [(OF/ay) — (d/dx)(aF/ay')] oy dx+ [(OF/oy’) 6y]X2 = 0. The arbitrary nature @y means the
square bracket must vanish and the last term constitutestinal boundary conditions

Example. TheEuler equatiorof sz F(x, v, ¥, ") dxis (d¥dx®)(oF/dy") — (d/dx)(0F/oy’) + (OF/dy) =
0, with natural boundary conditions dl6x)(OF/ay") — (OF/oy")] 6y}x2— 0 and §F/ay") oy’ |X2 =0. The
Euler equation ofxzjy2 F(X, ¥, U, Y U, Uy Uy, Uy) dx dyis (62/6x2)(aF/6u )+ (62/6x6y)(6F/uxy) +
(0%0y?)(dF/ou,,) — (a/ax)(aF/auX) (@/dy)(0F/ou,) + (@F/0u), and the natural boundary conditions are
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In the more general caselof [[F(x,y, u, Vv, 4 u, v, V) dx dy the conditiondl = 0 gives rise to
the two Euler equation8/px)(dF/du,) + (0/0y)(dF/du,) — @F/0u) = 0 and §/0x)(aF/dv,) + (8/dy)(dF/dv,)

— (OF/0v) = 0. These are two PDEsurandv that are linear or quasi-lineardrandv. The Euler equation
for I = Jffq(uf +u? +u?) dx dy dzfrom 8l = 0, is Laplace’s equatiam, + u,, + u,, = 0.

Variational problems are easily derived from the differential equation and associated boundary con-
ditions by multiplying by the variation and integrating the appropriate number of times. To illustrate,
let F(x), p(X), p(x), andw be the tension, the linear mass density, the natural load, and (constant) angular
velocity of a rotating string of length The equation of motion islidx)[F (dy/dx)] + pw?y + p = 0. To
formulate a corresponding variational problem, multiply all terms by a varidi@md integrate over
(0, L) to obtain

L d dYEI L L _
L & &DBy dx +J’0 pw2ydy dx +J[') pdy dx =0

The second and third integrals are the variations ofp®/3? and py, respectively. To treat the first
integral, integrate by parts to obtain

dyé% J’ng gyd —é: a J'ZFégjngZO

So the variation formulation is

6.]’:%pw y2 + py—FESyDZDdx+E:dy6y%

The last term represents thatural boundary conditionsThe term 1/2w?y? is the kinetic energy per
unit length, the termpy is the potential energy per unit length due to the radial fipgeand the term
1/2 F(dy/dx)? is a first approximation to the potential energy per unit length due to the t&fsjan
the string. Thus the integral is often called émergy integral

Constraints

The variations in some cases cannot be arbitrarily assigned because of one or more auxiliary conditions
that are usually callecbnstraints A typical case is the functionﬁjf F(x, u, v, |, ) dxwith a constraint

@(u, V) = 0 relatingu andv. If the variations oli andv (du anddv) vanish at the end points, then the
variation of the integral becomes

“EpF _ d DorCh  LoF d Oor 4 H

_Ll @u dxgﬁi%é Epv dx%i VDdX 0
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The variation of the constraig{u, V) = 0, @,0u + @dv = 0 means that the variations cannot both be
assigned arbitrarily insidex( x,), so their coefficients need not vanish separately. Mul@g@y + ¢,0v

= 0 by a Lagrange multipliex (may be a function of) and integrate to finﬁff ApOu + A@OV) dx =

0. Adding this to the previous result yields

J- F_ dDaFD F d OoF O
X

g
@au dX EFE )\(P [5U XWH )\(P [BVEdX 0

which must hold for any. AssignA so the first square bracket vanishes. Theoan be assigned to
vanish inside;, x,) so the two systems

doFO oF oo dDFOOF o
dX%XD ou Tt

v, 2 v

plus the constraimp(u, V) = 0 are three equations foy vandA.

References

Gelfand, I. M. and Fomin, S. V. 196Balculus of VariationsPrentice Hall, Englewood Cliffs, NJ.

Lanczos, C. 1949The Variational Principles of Mechanicgniv. of Toronto Press, Toronto.

Schechter, R. S. 196The Variational Method in EngineerinlylcGraw-Hill, New York.

Vujanovic, B. D. and Jones, S. E. 1988riational Methods in Nonconservative Phenomémtademic
Press, New York.

Weinstock, R. 1952Calculus of Variations, with Applications to Physics and EngineeMuGraw-
Hill, New York.

© 1999 by CRC Press LLC



19-70 Section 19

19.10 Optimization Methods

George Cain

Linear Programming

Let A be anm x n matrix, b a column vector withm components, and a column vector witm
components. Suppose< n, and assume the rankAfis m. The standard linear programming problem
is to find, among all nonnegative solutionsAaf = b, one that minimizes

CTX = C X +CX, - +C X,
This problem is called linear program. Each solution of the syst@m="b is called deasiblesolution,

and thefeasible sets the collection of alfeasible solutionsThe functionc™ =c¢;x; + C,%, + -+ + GX,

is the cost function, or the objective function. A solution to the linear program is callegtiaral

feasible solution.

Let B be anm x n submatrix ofA made up ofm linearly independent columns Af and letC be
them x (n —m) matrix made up of the remaining columnsfofLet x5 be the vector consisting of the
components ok corresponding to the columns Afthat make u@B, and letx. be the vector of the
remaining components af that is, the components wthat correspond to the columns@fThen the
equationAx = b may be writterBxg + Cxc = b. A solution ofBxg = b together withx. = 0 gives a
solution x of the systemAx = b. Such a solution is calledlasic solutionand if it is, in addition,
nonnegative, it is dasic feasible solutionf it is also optimal, it is amptimal basic feasible solution
The components of a basic solution are cdtlasic variables.

The Fundamental Theorem of Linear Programming says that if there is a feasible solution, there is a
basic feasible solution, and if there is an optimal feasible solution, there is an optimal basic feasible
solution. The linear programming problem is thus reduced to searching among the set of basic solutions
for an optimal solution. This set is, of course, finite, containing as many[ag(n — m)!] points. In
practice, this will be a very large number, making it imperative that one use some efficient search
procedure in seeking an optimal solution. The most important of such proceduresirigplb& methad
details of which may be found in the references.

The problem of finding a solution Ak < b that minimize<™ can be reduced to the standard problem
by appending to the vectgran additionam nonnegative components, callgédck variablesThe vector
X is replaced by, wherez" = [X;,%,...X, S,S,...X,], @and the matriXA is replaced b = [A I], wherel
is them x m identity matrix. The equatioAx = b is thus replaced bz = Ax + s= b, where § =
[s1S5-- .S Similarly, if inequalities are reversed so that we haves b, we simply appends-o the
vector x. In this case, the additional variables are calleplus variables.

Associated with every linear programming problem is a corresponding dual problempiintiaé
problem is to minimiz€™x subject tcAx = b, andx = 0, the correspondindual problem is to maximize
y'b subject tot™A < c. If either the primal problem or the dual problem has an optimal solution, so
also does the other. Moreoverxjf is an optimal solution for the primal problem apds an optimal
solution for the corresponding dual problefw, = y;b.

Unconstrained Nonlinear Programming

The problem of minimizing or maximizing a sufficiently smooth nonlinear funé¢rof n variables,
XT = [X;,%...X], with no restrictions on x is essentially an ordinary problem in calculus. At a minimizer
or maximizer X, it must be true that the gradientfofanishes:

Df(x*):O
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Thus X will be in the set of all solutions of this systenmajenerally nonlinear equations. The solution

of the system can be, of course, a nontrivial undertaking. There are many recipes for solving systems
of nonlinear equations. A method specifically designed for minimfzethemethod of steepest descent

It is an old and honorable algorithm, and the one on which most other more complicated algorithms for
unconstrained optimization are based. The method is based on the fact that at any point x, the direction
of maximum decrease 6fis in the direction of Bf(x). The algorithm searches in this direction for a
minimum, recompute8If(x) at this point, and continues iteratively. Explicitly:

1. Choose an initial point,x
2. Assumex, has been computed; then compyte 0f(x), and lett, = 0 be a local minimum of

9(t) = f(xc —tyi)- Thenx, = X — i
3. Replacek by k + 1, and repeat step 2 urtilis small enough.

Under reasonably general conditions, the sequegtegnverges to a minimum &f

Constrained Nonlinear Programming

The problem of finding the maximum or minimum of a functipf) of n variables, subject to the
constraints

[y (%,, %00 %, ) 0 OB 0
0 0 0,0
a(x):EﬂZ(xl’X: )g Eb =
O ' D 0
Bn(X0 X%, )5 D]

is made into an unconstrained problem by introducing the new furldpign

L(x) = f(x) +z"a(x)

wherez™ = [A,A,,...,A] is the vector ofLagrange multipliers Now the requirement thailL(x) = O,
together with the constraints a(x)os give a system afi + m equations

Of (x) +z'Da(x) =0
ax)=b

for then + m unknownsxy, X,..., X,, AA,..., A, that must be satisfied by the minimizer (or maximizer) x.
The problem of inequality constraints is significantly more complicated in the nonlinear case than in

the linear case. Consider the problem of minimiZ{mysubject tom equality constrainta(x) = b, and

p inequality constraints c(>)& d [thus a(x) andb are vectors ofn components, and c(x) amtlare

vectors ofp components.] A point*xthat satisfies the constraints isegular pointif the collection

{Da,(x), 03, (x")..... O, (x )} 0{ e, (x') : ; 03}

where
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is linearly independent. If'»s a local minimum for the constrained problem and if it is a regular point,
there is a vectoz with m components and a vectar= 0 with p components such that

Of (x) + zTDa(x*) + WTDC(X*) =0
WT(c(x*) - d) =0

These are th&uhn-Tucker conditiondNote that in order to solve these equations, one needs to know
for whichj it is true thatg(x”) = 0. (Such a constraint is said to deive)
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19.11 Engineering Statistics

Y. L. Tong

Introduction

In most engineering experiments, the outcomes (and hence the observed data) appear in a random and
on deterministic fashion. For example, the operating time of a system before failure, the tensile strength
of a certain type of material, and the number of defective items in a batch of items produced are all
subject to random variations from one experiment to another. In engineering statistics, we apply the
theory and methods of statistics to develop procedures for summarizing the data and making statistical
inferences, thus obtaining useful information with the presence of randomness and uncertainty.

Elementary Probability

Random Variables and Probability Distributions

Intuitively speaking, a random variable (denotedXby, Z, etc.) takes a numerical value that depends

on the outcome of the experiment. Since the outcome of an experiment is subject to random variation,
the resulting numerical value is also random. In order to provide a stochastic model for describing the

probability distribution of a random variab¥e we generally classify random variables into two groups:

the discrete type and the continuous type. The discrete random variables are those which, technically
speaking, take a finite number or a countably infinite number of possible numerical values. (In most

engineering applications they take nonnegative integer values.) Continuous random variables involve
outcome variables such as time, length or distance, area, and volume. We specify affujatalied

the probability density function (p.d.f.) of a random varia¥lesuch that the random variabfetakes

a value in a seA (or real numbers) as given by

DAf(x) for al setsAif X is discrete
PIXOA =0 (9.11.1)
%l' f(x)dx forall intervalsAif X is continuous
A

By letting A be the set of all values that are less than or equal to a fixed nymbgA = (—w,t), the
probability functionP[X < t], denoted byF(t), is called the distribution function of. We note that, by
calculus, ifX is a continuous random variable andr{k) is differentiable, thef(x) = % F(x).

Expectations

In many applications the “payoff’ or “reward” of an experiment with a numerical out¥dma specific
function of X (u(X), say). SinceX is a random variabley(X) is also a random variable. We define the
expected value af(X) by

Ez u(x)f(x)  if Xisdiscrete
Eu(X) = (9.11.12)
é[' u(x) f(x) dx if Xiscontinuous

provided of course, that, the sum or the integral exists. In particul#x) it x, theEX = u is called

the mean oK (of the distribution) and(X — p)? = o2 is called the variance of (of the distribution).

The mean is a measurement of the central tendency, and the variance is a measurement of the dispersion
of the distribution.
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Some Commonly Used Distributions

Many well-known distrbutions are useful in engineering statisti&song the discrete dishutions, the
hypegeometric and binomial diskitions lave applications in acceptance sampling problems and
quality control, and the Poisson dibtriion is useful for studying queuing theory and other related
problems Among the continuous diskxitions, the uniform distoution concerns random numbers and
can be applied in simulation studies, &xponential andyjamma disttiutions are closely related to the
Poisson disthution, and tley, together with th Weibull distribution, reve important applications in life
testing and reliability studiesll of these distiutions nvolve some unkown parameter(s), hence their
means andariances also depend on the parametef{® reader is referred textbooks in this area
for details.For example, Hahn and Shapiro (1967, pp. 163-169 and pp. 120-134) contains a compre-
hensve listing of these and other disutions on their p.d.6 and the graphs, parameter(s), means,
variances, with discussions aedamples of their applications.

The Normal Distribution

Perhagthemost important distbution in statistics and probability is the normal digttion (also kiown
as the Gaussian didttition). This distrbution involves o parameterst ando?, and its p.d.f. isigen by

Pty

e 2 (9.11.3)

— . 2\ —
f(x) f(x,p,c ) s
for —o < <0, 62> 0, and e <X < co. It can be sbwn analytically that, for a p.d.f. of this form, the
values ofy anda? are, respedtely, that of the mean and tivariance of the distoution. Furthe, the
quantiy, 0 = v a? is called the standardadation of the distihution. We shall use the symb ~
N(u, 02 to denote thaK has a normal distiution with mea p andvariancec? When plottting the
p.d.f. f(x; 4, 0? given in Equation (19.11.3) we see that the resulting graph represents a bell-shaped
curve symmetric aboyt, as sbwn in Figure 19.11.1.

I
FIGURE 19.111 The normal cure with meanu andvarianceg?.

If a randomvariableZ has anN(0,1) distrbution, then the p.d.f. of is gven by (from Equation
(19.11.3))

1 e
Z)=—e?2 —0<z< 9.11.4
%2 = ©<Z<wm ( )
The distrbution function ofZ,
cb(z):I Puydu -ow<z<o (9.11.5)
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cannot be given in a closed form, hence it has been tabulated. The tdifi# cén be found in most
textbooks in statistics and probability, including those listed in the references at the end of this section.
(We note in passing that, by the symmetry prop@r(y) + ®(—2) = 1 holds for allz.)

Random Sample and Sampling Distributions

Random Sample and Related Statistics

As noted in Box et al., (1978), the design and analysis of engineering experiments usually involves the
following steps:

1. The choice of a suitable stochastic model by assuming that the observations follow a certain
distribution. The functional form of the distribution (or the p.d.f.) is assumed to be known, except
the value(s) of the parameters(s).

2. Design of experiments and collection of data.

3. Summarization of data and computation of certain statistics.

4. Statistical inference (including the estimation of the parameters of the underlying distribution and
the hypothesis-testing problems).

In order to make statistical inference concerning the parameter(s) of a distribution, it is essential to
first study the sampling distributions. We say tatX,, ..., X, represent a random sample of sizié
they are independent random variables and each of them has the sam&({).d(bue to space
limitations, the notion of independence will not be carefully discussed here. Nevertheless, we say that
Xy, X5 ..., X, @re independent if

AX OA, X, OA, ..., X, OA] = : A% 0A] (19.11.6)

holds for all set#\,, A, ..., A,.) Since the parameter(s) of the population is (are) unknown, the population
meanp and the population variane® are unknown. In most commonly used distributipnand o2
can be estimated by the sample me&an and the sample va8iarespectively, which are given by

- n n . n - D
X=2§x, =1 F(x-X =1 0yx-nx?0  (19.11.7)
n& n-1 4 n-1 4 A

(The second equality in the formula f8f can be verified algebraically.) Now, sinkg X,, ..., X, are
random variablesX anf are also random variables. Each of them is called a statistic and has a
probability distribution which also involves the unknown parameter(s). In probability theory there are
two fundamental results concerning their distributional properties.

Theorem 1. (Weak Law of Large Numbers). As the sample sizeecomes large X convergesto
in probability andS converges t@? in probability. More precisely, for every fixed positive number
> 0 we have

AX-use -1 Fs-0?<e] -1 (19.11.8)

asn - oo,

Theorem 2. (Central Limit Theorem). As becomes large, the distribution of the random variable
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X - n(x -
7= X"H_* (X-w) (19.11.9)
g N (0)
has approximately aN(0,1) distrbution. More precisg|
P[Z < Z] - ®(2) for every fixed zasn — (19.11.10)

Normal Distribution-Related Sampling Distributions

One-Sample Case

Additional resultexist when the obseations come from a normal populatiohXl, X,, ..., X, represent
a random sample of &in from anN(u,0?) population, then the faiWing sample distkutions are useful:

Fact 3. For every fixed n the distrbution of Z gven in Equation (19.11.9) kaxactly an N(0,1)
distribution.

Fact 4. The distrbution of the statisticT = /n(X —pn)/S, where S=+S* is the sample standard
deviation, is called &tuderis t distributionwith v = n — 1 degrees of freedom, in symboté —1).

This distrbution is useful for making inferencen @ whena? is unkrown; a table of the percentiles
can be found in most statistiexttbooks.

Fact 5. The distrbution of the statisti®V = (n —1)S/0? is called achi-squaied distributionwith v =

n —1 degrees of freedom, in symbaid(v).

Such a disthbution is useful in making inferencen @?; a table of the percentiles can also be found in
most statistics books.

Two-Sample Case

In certain applications we may be interested in the comparisongodifferent treatments. Suppose
that independent samples from treatraditandT, are to be obseed as sbwn in Table 19.11.1

TABLE 19.111 Summarization of Datafor a Two-Sample Roblem

Treatment Observations Distribution ~ Sample Size Sample Mean Sample Variance

T Xigr X ees X1n1 N (Ulycf) n; )?1 Sf

2 s

X

T, Xogr Xoprooen X2n2 N (U5, 05) n,

The dfference of the population means € ,) and the ratio of the populatiorariances can be
estimated, respduely, by (X, -X,) ard §/S}. The following facts summarize the digtitions of
these statistics:

Fact 6. Under the assumption of normglit(X, - X,) has arN(u; — ,, (02/n,) + (05/n,)) distribu-
tion; or equvalentl, for all n;, n, the statistic

z :[(>*<1 = X,) - (i, —pz)] (o2 /n, +02/n,)" (19.11.11)

has anN(0,1) distribution.

Fact 7. When o? = g5 = ¢, the common populatiovariance is estimated by

& =(n+n,-2)"[(n 1) +(n, 1S (19.11.12)
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and (n, +n, -2)S;/a” has ax¥(n, + n, — 2) distribution.

Fact 8. When o? =02, the statistic

T=[(% - %)~ (- 1,)] /5, (vm, +4m,) (19.11.13)

has at(n, + n, — 2) distribution, whereS, = \Ss

Fact 9. The distribution of F = (§'/0?)/(S;/03) is called an F distribution with degrees of freedom
(n, =1, n, — 1), in symbols,F(n, — 1, n, — 1),
The percentiles of this distribution have also been tabulated and can be found in statistics books.
In the following two examples we illustrate numerically how to find probabilities and percentiles
using the existing tables for the normal, Student&hi-squared, ang distributions.

Example 10. Suppose that in an experiment four observations are taken, and that the population is
assumed to have a normal distribution with mgamd variance?. Let X and< be the sample mean
and sample variance as given in Equation (19.11.7).
(a) If, based on certain similar experiments conducted in the past, we knav¢ that& x 10 (o
= 1.8x 1079, then from®d(-1.645) = 0.05 and(1.96) = 0.975 we have

0 - 0
Pr1645<  ~ M <1967=0975-0.05=0.925
0 1.8x10™ 4 0

or equivalently,
P[—1.645 x09x10° < X~ <1.96% 0.9 % 10‘3] =0.925

(b) The statisticT =2(X —)/S has a Studerittistribution with 3 degrees of freedom (in symbols,
t(3)). From the table we have

P[—3.182 <2(X-p)/ss< 3.182] =095
which yields

SO_

PH3182x 2 < X - <3182 % S0

S
H 2

or equivalently,

P§2—3.182 xS << X+3182x =095
2 2B

This is, in fact, the basis for obtaining the confidence interval fgiwen in Equation (19.11.17) when
02 is unknown.

(c) The statistic /02 has a chi-squared distribution with 3 degrees of freedom (in synx3(d3).
Thus from the chi-squared table we h&©.216< 3%/0? < 9.348] = 0.95, which yields

2 2
PESS g2 S g: 0.95
Ho.348 0.216H
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and it forms the basis for obtaining a fidence interal for 02 as gven in Equation (19.11.18).

Examplell. Suppose thaniTable 19.11.(with two treatments) wedre n, = 4 andn, = 5, and we
let X, X, ad &, S2 denote the corresponding sample means and samueces, respavely.

(a) Assume tha o? = 0 where the commonwariance is unkown and is esumatedbeﬁ given in
Equation (19.11.12)I’hen the statistic

T=[(% = %) = (b =) /S, (e + /)

has at(7) distrbution. Thus from the table we bve

= [—2.998 <%= %) = (- wa)] /S (Ya+e) < 2.998] =0.98

which is eqivalent to saying that

P’—2.9988p(1/4 + Y sy -, < (X - %) + 29088, (Y, + 1/5)”2] =098

(b) The statist F =(S/02)/(S/03) has arF(3,4) distrbution. Thus from theF-table we lve

P <6.59 —095
i,

or equvalentl,

2 2
0
P2 <6502 B= 005

P SZD

The distrbutions listed abve (normal, Studetgt, chi-squared, an#) form an inegral part of the
classical statistical inference thgoand tley are @veloped under the assumption that the olzEms
follow a normal distbution. When the disthiution of the population is not normal and inference on the
populations means is to be made, we conclude that (1) if the sampe,sing are lage, then the
statistt Z in Equation (19.11.11) has an approxiens{0,1) distrbution and (2) in the small-sample
case, theexact distrbution d X (of (X, - X,))) depends on the population p.dihere are everal
analytical methods for obtaining it, and those methods can be found in stagidhioeks.

Confidence Intervals

A method for estimating the population parameters based on the sample mean(s) andasiamqx¢s)
involves the confidence intals for the parameters.

One-Sample Case

1. Confidence Interval fqu Wheng? is Known. Consider the situation in which a random sample of
sizen is t&ken from anN(u,0?) population and? is krown. An intewal, |, of the forml; = (X —d,

X +d) (with width 2d) is to be constructed as a “ditence inteval or " If we make the assertion
that W is in this inteval (i.e.,p is bounded belv by X —d and bounded abe by X + d), then
sometimes this assertion is correct and sometimes it is wrong, dependingvalu¢hé X in a gven
experiment. If for a %ed a value wewould like to tave a confidence probability (called dmence
codficient) such that
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Pluon]=FX-d<p<X+d/=1-a (19.11.14)

. o .
then we need to choose th@ue ofd to satisf d=z,,—, i.e,
AN

0' _
1:%-zu/zﬁ,x”wﬁg (19.11.15)

where z,, is the (1 -a/2)th percentile of taN(0,1) distrbution such tha®(z,,) = 1 —a/2. To see this,
we note that from the sampling distrtion & X (Fact 3) we ave

_ X -
P%—Q/2%<p<x+zu/zi§: PMSZ

(19.11.16)

We further note thatven when the original population is not normat, Theorem 2 the confidence
probability is approximately (+ a) when the sample size is reasonabtgéda

2. Confidence Interval fqu Whenoa? is Unknown. Assume that the obsations are frommaN(u,0?)
population. Wha o? is unkrown, by Fact 4 and a similarrgument we see that

= K t(n-1) 2, Xt (n-1) 21 (19.11.17)
AN An

is a confidence inteal for p with confidence probability + o, wheret,,(n — 1) is the (1 -/2)th
percentile of the(n — 1) distrbution.

3. Confidence Interval foo2. If, under the same assumption of nornyakit confidence inteal for g2
is needed whep is unkrown, then

1, = (-0 /X2 (0-1), (1-1) /X2 ,(n-1)) (19.11.18)
has a confidence probability-la, when xf_u/z(n -1) and xf,/z (n — 1) are thed/2)th and (1 -a/2)th
percentiles, respagely, of thex?(n — 1) distrbution.

Two-Sample Case

1. Confidence Intervals fqr, — 1, When 02 = 05 are Known. Consider arexperiment thatrivolves
the comparison ofo treatmentsT, andT,, as indicatedn Table 19.11.1If a confidence inteal for
3 = W, — |, is needed whe o ard o2 are unkown, then byFact 6 and a similarrgument, the
confidence intaml

I, = ((Xi - )7(2) - Zu/z\scf/nl +03/n,, ()?1 - 7(2) + Zu/z\scf/nl + cg/nz) (19.11.19)

has a confidence probability-1a.

2. Confidence Interval fqu, — p, when 02, 05 are Unknown but Equal.Under the additional
assumption thao? = o3, but the commorvariance is unkown, then byFact 8 the confidence intea
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:=((X% - %) -, (% - %) +d) (19.11.20)
has a confidence probability-la, where

d=t,,(n, +n, -2)S,(¥n, +1n,)" (19.11.21)

3. Confidence Interval fo 05/07. A confidence interal for the ratio of thevariance 03/0> can be
obtained from thé- distribution (seefFact 9), and the confidence intal

2 2

O 0
lg = Hzl—a/Z(nl -1n2 _1)222' Fu/z(nl -1n2, _1)2225 (19.11.22)

has a confidence probability-la, whereF, ,,(n, — 1,n, — 1) andF,(n, — 1,n, — 1) are, respeiotly,
the @/2)th and (1 -e/2)th percentiles of the(n, — 1,n, — 1) distrbution.

Testing Statistical Hypotheses

A statisticalhypothesis concerns a statement or assertion about thellngeof the parameter in &gn
distribution. In the wo-hypothesis problems, we deal with a fyfpothesis and an alterina hypothesis,
denoted byH, andH,, respedtely. A decision is to be made, based on the data o&tperiment, to
either accepH, (hence rejedt,) or rejectH, (hence accep,). In such awo-action problem, we may
commit wo types of errors: the type | error is to rejelg when it is true, and the type Il error is to
accep H, when it isfalse As a standard practice, we do not rejdgunless there is significaatidence
indicating that it may bélse. (In doing so, thieurden of proof thaH, is false is on thexperimente)
Thus we usually choose a smfiled numbe a (such as 0.05 or 0.01), such that the probability of
committing a type | error is at most (or equgl do With such a ena, we can then determine the
region in the data space for the rejectidrHg (called the critical egion).

One-Sample Case

Suppose thaX,, X,, ..., X, represent a random sample ofesizfrom anN(,02) population, andX
ard & are, respedtely, the sample mean and sampégiance.

1. Test for Mean. In testing

HO:u:uovs.Hl:u:ul(ul>uo)orHl:p>pO

wheno? is krown, we rejecH, when X is lage To determine the cuttbpoint, we note (byFact 3)
that the statisti Z, = (X —,)/(a/~ n) has arN(0,1) distrbution undeH,. Thus, if we decide to reject
H, whenz, > z,, then the probability of committing a type | erreoi As a consequence, we apply the
decision rule

d, : reject H, ifandonlyif)?>p0+zu%
Similarly, from the distfbution of Z, underH, we can obtain the criticabgion for the other types
of hypothesedNVhena? is unkrown, then byFact 4T, = \ n(X - ,)/S has a(n — 1) distrbution under
H,. Thus the corresponding tests can be obtained by subgtity(tin- 1) forz, andS for 0. The tests
for the various one-sided anavb-sided hypotheses are summarizedable 19.11.2below. For each
set of hypotheses, the criticagion gven on the first line is for the case wh& is krown, and that
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TABLE 19.112 One-Sampk Testsfor Mean

Null HypothesisH,  Alternative HypothesisH, Critical Region

V3 o
H=Ho OrlL = Ho M =Hg > Ho OF | > Ho X>H0+Zu\/7n
N S
X > +t —
Ho “ n
N3 o
H=HoOrp =, M =Hq <Ho OF L < o X<Po'zufﬁ
N
)?<u0_tui
,\/‘n
N3 o
H=Ho H# Ho ‘X_H0‘>Zu/2‘7
VN
N S
‘X_“o‘>ta/2‘7
An

given on the second line is for the case mvbigis unkrown. Furthermoret, andt,, stand fort,(n —
1) andt,,(n — 1), respedvely.

2. Test forVariance. In testing hypotheses concerning tlagiances? of a normal distbution, useract
5 to assert that, undel;: 02 = g2, the distrbution ofw, = (n— 1) S*/a? isx?(n— 1). The corresponding
tests and criticalegions are summarized in the falling tabe (x> ard x?2,, stand fo x2 (n— 1) and
X2, (n— 1), respedtely):

TABLE 19.113 One-Sampk Testsfor Variance

Null HypothesisH,  Alternative HypothesisH, Critical Region
0’ =c’ora’<a? o® =0’ >0} ora? >0’ (52/0§)>ﬁX§
o?=c02oro’202 o?=o0?<cloro®<0o? (52/05)<ﬁXf-u

o2 =02 g’ #a? (Sz/og)>ﬁx§,2

1
or (52/03) < mxf—u/z

Two-Sample Case
In comparing the means awmdriances ofwo normal populations, we oncgaén refer 6 Table 19.11.1
for notation and assumptions.

1. Test for Diffeence offwo Means. Let d = |, — |, be the diference of thewo population means.
In testingH,: 0 = 3, vs. a one-sided owb-sided alternate hypothesis, we note that, for

1=(02/n, +02/n,)" (19.11.23)
and

v=5,(yn +1n,)" (19.11.24)
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Z, = [(X, = X,) =&/t has arN(0,1) distribution undeH, andT, = [ (X, - X,) —&g/v has at(n, +

n, — 2) distribution undeH, when o2 = ¢3. Using these results, the corresponding critical regions for
one-sided and two-sided tests can be obtained, and they are listed below. Note that, as in the one-sample
case, the critical region given on the first line for each set of hypotheses is for the case of known
variances, and that given on the second line is for the case in which the variances are equal but unknown.
Further,t, andt,, stand fort,(n, + n, — 2) andt,,(n, + n, — 2), respectively.

TABLE 19.11.4 Two-Sample Tests for Difference of Two Means

Null HypothesisH,  Alternative HypothesisH, Critical Region
5=30rd< 8, 5=8,>8,0r8>3, (*1-*2)>50+zar
(71 - 72) >8, +t,V
5=8,0r52 8, 5=8,<80rd<8, (X, -%,) <8, -2zt
(71 - )72) <8y —t,V
5=8, 5%, ‘(’1—’2)—50 >z,
(% %) -30[>t, 0

A Numerical Example

In the following we provide a numerical example for illustrating the construction of confidence intervals
and hypothesis-testing procedures. The example is given along the line of applications in Wadsworth
(1990, p. 4.21) with artificial data.

Suppose that two processé@s éndT,) manufacturing steel pins are in operation, and that a random
sample of 4 pins (or 5 pins) was taken from the proTegthe procesd,) with the following results
(in units of inches):

T, : 0.7608, 0.7596, 0.7622, 0.7638
T, 1 0.7546, 0.7561, 0.7526, 0.7572, 0.7565

Simple calculation shows that the observed values of sample means sample variances, and sample
standard deviations are:

X, =07616, & =3280x10° §=1.811x10"°
X, =0.7554, S =3355x107°, S =1.832x107°

One-Sample Case
Let us first consider confidence intervals for the parameters of the first prbcesdy.

1. Assume that, based on previous knowledge of processes of this type, the variance is known to
be 07 =1.80x 10° (g, = 0.0018). Then from the normal table (see, e.g., Ross (1987, p. 482)
we havez, o, = 1.96. Thus a 95% confidence interval figris

(0.7616 -1.96x 0.0018/+/4, 0.7616 +1.96 x 0.0018/~ 4)
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or (0.7598, 0.7634) (after rounding off to the 4th decimal place).
2. If o? is unknown and a 95% confidence intervalifpis needed then, fdg,,;(3) = 3.182 (see,
e.g., Ross, 1987, p. 484) the confidence interval is

(0.7616 -3.182 x 0.001811/+/4, 0.7616 + 3.182 x 0.001811N4)

or (0.7587, 0.7645)

3. From the chi-squared table with 4 — 1 = 3 degrees of freedom, we have (see, e.g., Ross, 1987, p.
483) X245 = 0.216,X2.,s = 9.348. Thus a 95% confidence intervalofpr ~ is 3280
10%/9.348, 3x 3.280x 10%0.216), or (1.052& 10, 45,5556x 10-9).

4. In testing the hypotheses

Hy:l, =076 vs. H, :, >0.76

with a = 0.01 wheno? is unknown, the critical regionds > 0.76 + 468001811~ 4 =
0.7641. Since the observed value is 0.7616s accepted. That is, we assert that there is no
significant evidence to call for the rejectiontf

Two-Sample Case

If we assume that the two populations have a common unknown variance, we can use the Student’s
distribution (with degree of freedom = 4 + 5 — 2 = 7) to obtain confidence intervals and to test
hypotheses fop, — p,. We first note that the data given above yield

S = 1(3 x 3.280 + 4 x 3.355) x 107
=

=3.3229x10°

S, =18229x10°  v=S, J4+15=12228x10"

and X, - X, =0.0062.

1. A 98% confidence interval far, — 1, is (0.0062 — 2.998 0.0062 + 2.999 or (0.0025, 0.0099).

2. In testing the hypothesek: u, = W, (i.e., 4, —H, = 0) vs.H;: Y, > Y, with a = 0.05, the critical
region is (X, — X,) > 1.896= 2.3172 x 103 ThusH, is rejected; i.e., we conclude that there
is significant evidence to indicate thgt> g, may be true.

3. In testing the hypothesék: W, = [, Vs. W, # W, With a = 0.02, the critical region i$X, — X,
> 2.998 = 3.6660 x 103 ThusHj, is rejected. We note that the conclusion here is consistent
with the result that, with confidence probability = 0.98, the confidence interval fqr,(—

,) does not contain the origin.

Concluding Remarks

The history of probability and statistics goes back to the days of the celebrated mathematicians K. F.
Gauss and P. S. Laplace. (The normal distribution, in fact, is also called the Gaussian distribution.) The
theory and methods of classical statistical analysis began its developments in the late 1800s and early
1900s when F. Galton and R.A. Fisher applied statistics to their research in genetics, when Karl Pearson
developed the chi-square goodness-of-fit method for stochastic modeling, and when E.S. Pearson and
J. Neyman developed the theory of hypotheses testing. Today statistical methods have been found useful
in analyzing experimental data in biological science and medicine, engineering, social sciences, and
many other fields. A non-technical review on some of the applications is Hacking (1984).
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Applications of statistics in engineering include many topics. In addition to those treated in this
section, other important ones include sampling inspection and quality (process) control, reliability,
regression analysis and prediction, design of engineering experiments, and analysis of variance. Due to
space limitations, these topics are not treated here. The reader is referred to textbooks in this area for
further information. There are many well-written books that cover most of these topics, the following
short list consists of a small sample of them.
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19.12 Numerical Methods

William F. Ames

Introduction

Since many mathematical models of physical phenomena are not solvable by available mathematical
methods one must often resort to approximate or numerical methods. These procedures do not yield
exact results in the mathematical sense. This inexact nature of numerical results means we must pay
attention to the errors. The two errors that concern us hereward-off errorsandtruncation errors.
Round-off errors arise as a consequence of using a number specifiedivgct digits to approximate
a number which requires more thardigits for its exact specification. For example, using 3.14159 to
approximate the irrational numbar Such errors may be especially serious in matrix inversion or in
any area where a very large number of numerical operations are required. Some attempts at handling
these errors are callehclosure method¢Adams and Kulisch, 1993).
Truncation errors arise from the substitution of a finite number of steps for an infinite sequence of
steps (usually an iteration) which would yield the exact result. For example, the itgrétios 1
+ [ xty, 4(t)dt, y(0) = 1 is only carried out for few stepsbut it converges imfinitely many steps.
The study of some errors in a computation is related to the theory of probability. In what follows, a
relation for the error will be given in certain instances.

Linear Algebra Equations

A problem often met is the determination of the solution vacteru,, u,, ..., u,)T for the set of linear
equationsAu = v whereA is then x n square matrix with coefficienta; (i, j = 1, ...,n), v= (v, ...,
v,)T andi denotes the row index apdhe column index.

There are many numerical methods for finding the solutionf Au = v. The direct inversion o
is usually too expensive and is not often carried out unless it is needed elsewhere. We shall only list a
few methods. One can check the literature for the many methods and computer software available. Some
of the software is listed in the References section at the end of this chapter. The methods are usually
subdivided intadirect (once through) oiterative (repeated) procedures.

In what follows, it will often be convenient to partition the matkixnto the formA=U + D + L,
whereU, D, andL are matrices having the same element4, asspectively, above the main diagonal,
on the main diagonal, and below the main diagonal, and zeros elsewhere. Thus,

0 a, a0
Lo 0 s o ar
o .. 0
o o oA

We also assume thes are not all zero and dét# 0 so the solution is unique.
Direct Methods

Gauss ReductionThis classical method has spawned many variations. It consists of dividing the first
equation bya,, (if a;; = 0, reorder the equations to findap# 0) and using the result to eliminate the
terms inu, from each of the succeeding equations. Next, the modified second equation is divided by
a, (if a,= 0, a reordering of the modified equations may be necessary) and the resulting equation is
used to eliminate all terms in in the succeeding modified equations. This elimination is ddimees
resulting in a triangular system:
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0 et un—l + ar'1—1,nun = Vr'1—1

where & andv; represent the specific numerical values obtained by this process. The solution is obtained
by working backward from the last equation. Various modifications, such as the Gauss-Jordan reduction,

the Gauss-Doolittle reduction, and the Crout reduction, are described in the classical reference authored
by Bodewig (1956). Direct methods prove very useful for sparse matrices and banded matrices that often
arise in numerical calculation for differential equations. Many of these are available in computer packages

such as IMSL, Maple, Matlab, and Mathematica.

The Tridiagonal AlgorithmWhen the linear equations are tridiagonal, the system

b1u1+clu2:dl
au_ +bu +cu,, =d

i+l i

au._, +bu, =d,, i=2,3 ..,n-1

can be solved explicitly for the unknown, thereby eliminating any matrix operations.
The Gaussian elimination process transforms the system into a simpleruppeobidiagonaform.

We designate the coefficients of this new systemaby' ¢’ and d, and we note that
a=0 i=23 ..,n
b'=1, i=1,2 ..,n

The coefficientsc’ and d! are calculated successively from the relations

b, by
r Ci+1
. ~8.,4C
d;ﬂ:'ﬂZﬂd, i=1,2 .. n-1
i+1 i

and, of courseg, = 0.
Having completed the elimination we examine the new system and see thtat ¢lg@ation is now

Substituting this value into the ¢ 1)st equation,

un—l + C;—lun = dr'1—1
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we have
Uy =diy — G,
Thus, starting withu,, we have successively the solution fpas

u =d -cu i=n-14,n-2,...,1

i i+l

Algorithm for Pentadiagonal MatrixThe equations to be solved are

au_, +bu_ +cu +du, +eu,, = f

forl<i<Rwitha, =b, =a,=e;; =d;=e=0.
The algorithm is as follows. First, compute

6, =d/c
A =g/c
Y. = /¢
and
M, =C, — 0,0,
5, =(d, =bA,)/u,
A, =6 /1,

Y, = (f - bzyl)/uz

Then, for 3<i < R- 2, compute

B =b-ao_,

Wi =¢ —Bo—ah,,
8 =(d -BA)/m,
A =e /K

Yi = (fi =BV~ aiyi—z)/ui
Next, compute
BR—l = bR—l - aR—léR—3
Mri1=Cra~ BR—léR—Z - aR—l)\ R-3
6R—1 = (dR—l - BR—l)\ R—2)/Ll R-1

Yra ™ ( fo1 ~BraYro ~ 3raY R_3) / Mgy
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and

BR = bR - aRéR—Z
Mg =Cr~ BRéR—l - aR)\ R-2

Yr = (fR “BrYra ~ aRyR—Z)/uR

Section 19

The; andy,; are used only to compude A;, andy,, and need not be stored after they are computed.
Thed, A;, andy,, must be stored, as they are used in the back solution. This is

Uz =Yg
Uzg = Yra ™ 6R—luR

and

U =Y, =, —AU,,

forR-2=i2>1.

General Band AlgorithmThe equations are of the form

(M) (M)
AMX o+ AN

] j-M+1

() @) (M-1)
+CVX, +CPX,, +o-+CMIX

j j+M-1

for 1<j <N, N= M. The algorithm used is as follows:
a®=aAW=0, forkz]j

cW=0, fork=N+1-]
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M
=y — ()
X =Y, ZWJ' Xivp
&

Cholesky DecompositionVhen the matrixA is a symmetric and positive definite, as it is for many
discretizations of self-adjoint positive definite boundary value problems, one can improve considerably
on the band procedures by using the Cholesky decomposition. For the Bystemthe MatrixA can

be written in the form

A=(1+L)D(I +U)

wherelL is lower triangularl) is upper triangular, arid is diagonal. IfA = A’ (A’ represents the transpose
of A), then

A=A =(1+U) D(I +L)

Hence, because of the uniqueness of the decomposition.

l+L=(1+U) =1+U’

and therefore,

A=(1+U) D(I +U)
that is,

A=B'B, whereB=D(I +U)
The systenAu = v is then solved by solving the two triangular system
B'w=v
followed by
Bu=w

To carry out the decompositighi= B'B, all elements of the first row & and of the derived system,
are divided by the square root of the (positive) leading coefficient. This yields smaller rounding errors
than the banded methods because the relative err@aof is only half as large as ttsatifofAlso,
taking the square root brings numbers nearer to each other (i.e., the new coefficients do not differ as
widely as the original ones do). The actual computatiod of(b;), j > i, is given in the following:
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by, = ()" b, =a, /by, 22
b22 = (azz - 22)1/2' sz = (azj - b12b1j)/b22

b, = (aae. - b123 - bzzs)wi b3j = (a3j - b13b11 - bzssz )/bss

o iz d* o = 0
b”:Bpﬂ—ZbkﬁE, qj:E@j-ZbeHS/)”, i22j22

Iterative Methods

Iterative methods consist of repeated application of an often simple algorithm. They vyield the exact
answer only as the limit of a sequence. They can be programmed to take care ofxamd ane self-
correcting. Their structure permits the use of convergence accelerators, such as overrelaxation, Aitkins
acceleration, or Chebyshev acceleration.

Let a; > O for alli and def # 0. With A = U + D + L as previously described, several iteration
methods are described fdd ¢- D + L)u = v.

Jacobi Method (lteration by total stepsSinceu =-D-JU +L]u + DY, the iteratioru® isu® = -D-U
+ LJu®D + DY, This procedure has a slow convergent rate designatB xR < 1.

Gauss-Seidel Method (lteration by single step4).=u-L + D)-"Uu®? + (L + D). Convergence rate
is 2R, twice as fast as that of the Jacobi method.

Gauss-Seidel with Successive Overrelaxation (S(DR).Ui(k) be theith components of the Gauss-
Seidel iteration. The SOR technique is defined by

ui(k) = (1_ w)ui(k_l) + (mjl(k)

where 1 <w < 2 is the overrelaxation parameter. The full iteration¥is= (D + w L) {[(1 — w)D —w
UJu®D + @ v}. Optimal values ofw can be computed and depend upon the propertids(Afmes,
1993). With optimal values ab, the convergence rate of this method <2 which is much larger
than that for Gauss-Seidd® (s usually much less than one).

For other acceleration techniques, see the literature (Ames, 1993).

Nonlinear Equations in One Variable

Special Methods for Polynomials

The polynomialP(x) = ax” + a,x™* + --- + a, X + &, = 0, with real coefficients;, j = 0, ...,n, has
exactlyn roots which may be real or complex.

If all the coefficients oP(x) are integers, then any rational roots, g&@y(r ands are integers with
no common factors), dP(x) = 0 must be such thatis an integral divisor o, ands is an integral
division of a,. Any polynomial with rational coefficients may be converted into one with integral
coefficients by multiplying the polynomial by the lowest common multiple of the denominators of the
coefficients.

Example. x*—5¢/3 +x/5 + 3 = 0. The lowest common multiple of the denominators is 15. Multiplying
by 15, which does not change the roots, gives £525¢ + 3x + 45 = 0. The only possible rational
rootsr/s are such that may have the valu#45,+15, 15, £3, andt1, whiles may have the valuesl5,

© 1999 by CRC Press LLC



Mathematics 19-91

5, +3, and+1. All possible rational roots, with no common factors, are formed using all possible
guotients.

If a;, > 0, the first negative coefficient is preceded lmpefficients which are positive or zero, ahd
is the largest of the absolute values of the negative coefficients, then each real root is less than 1 +
kG/a, (upper bound on the real roots). For a lower bound to the real roots, apply the criterion to
P(—x) = 0.

Example. P(x) =x®+ 3* - 2¢ - 1%+ 2 = 0. Herea, = 1,G = 12, andk = 2. Thus, the upper bound
for the real roots is 1 12 = 4.464. For the lower boun®(—x) = ¢ + 3X* + 2¢ + 1X + 2 = 0,
which is equivalent to® — 3x* — 2¢ — 1% — 2 = 0. Herk = 1,G = 12, andg, = 1. A lower bound is
—(1 + 12) = 13. Hence all real roots lie in —1% < 1 + 312.

A useful Descartes rule of signfor the number of positive or negative real roots is available by
observation for polynomials with real coefficients. The number of positive real roots is either equal to
the number of sign changes,or is less than by a positiveeveninteger. The number of negative real
roots is either equal to the number of sign changes,P(—x), or is less than by a positive even integer.

Example. P(X) =x* — 3¢ — 2¢ + x — 1 = 0. There are three sign change2(s) has either three or
one positive roots. Sind&—x) = =¢ + 3¢ — 2@ — 1 = 0, there are either two or zero negative roots.

The Graeffe Root-Squaring Technique
This is an iterative method for finding the roots of the algebraic equation

f(x) =axP +axP* +.-+a ;x+a =0

If the roots are, r,, 15, ..., then one can write

g r? rp g
S :rlp§+i+i+...
b P H

and if one root is larger than all the others, sathen for large enoughall terms (other than 1) would
become negligible. Thus,

~rP
Sp~r1
or
imsyp =
msp =r

The Graeffe procedure provides an efficient way for compi@jvia a sequence of equations such that

the roots of each equation are the squares of the roots of the preceding equations in the sequence. This
serves the purpose of ultimately obtaining an equation whose roots are so widely separated in magnitude
that they may be read approximately from the equation by inspection. The basic procedure is illustrated
for a polynomial of degree 4:

f(x) = ax* +ax’ +a,x* +a,x+a, =0

Rewrite this as

a,x* +a,x’ +a, = -ax’ - ax
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and square both sides so that upon grouping

0+ 2 -2+ (a0, 200, )i+ a4t =0

Because this involves only even powerssofve may sey = x2 and rewrite it as

aZy* +(2a,3, - a)y* + (28,3, — 28,3, + a2)y* + (23,3, - &)y +a2 = 0

whose roots are the squares of the original equation. If we repeat this process again, the new equation
has roots which are the fourth power, and so on. ffeerch operations, the roots arg@iginal roots).
If at any stage we write the coefficients of the unknown in sequence

A
then, to get the new sequenaf™”,  wri@™ =2al”?  (times the symmetric coefficient) with respect
to a® — 2a” (times the symmetric coefficienty — (-1j a®*. Now if the roots are,, r,, r,, andr,,

then ala, = — Z*,r,a®/al’ =-3r?,..., a®/alP? = -3r?". If the roots are all distinct amg is the
largest in magnitude, then eventually

(p)
r2p ~ —

a
1
aép)
And if r, is the next largest in magnitude, then

()

I,.2p ~— a2
(p)

&

2

And, in generaIaTﬂ”)/aff’1 = —rnz”. This procedure is easily generalized to polynomials of arbitrary degree
and specialized to the case of multiple and complex roots.

Other methods include Bernoulli iteration, Bairstow iteration, and Lin iteration. These may be found
in the cited literature. In addition, the methods given below may be used for the numerical solution of
polynomials.

General Methods for Nonlinear Equations in One Variable

Successive Substitutions

Let f(x) = O be the nonlinear equation to be solved. If this is rewritten=a&(x), then an iterative
scheme can be set up in the foxm = F(x). To start the iteration, an initial guess must be obtained
graphically or otherwise. The convergence or divergence of the procedure depends upon the method of
writing x = F(x), of which there will usually be several forms. A general rule to ensure convergence
cannot be given. However, afis a root off(x) = 0, a necessary condition for convergence is Bgd)|

< 1 in that interval abowa in which the iteration proceeds (this means the iteration cannot converge
unlessk'(X)| < 1, but it does not ensure convergence). This process isfoalledderbecause the error

in %, is proportional to the first power of the errongn

Example. f(x) =x3 —x—1 = 0. A rough plot shows a real root of approximately 1.3. The equation
can be written in the form = F(x) in several ways, such as= X3 — 1,x = 1/ — 1), andx = (1 +
X)13, In the first case;’(x) = 32 = 5.07 atx = 1.3; in the secondr'(1.3) = 5.46; only in the third case
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is F'(1.3) < 1. Hence, only the third iterative process has a chance to converge. This is illustrated in
the iteration table below.

1
Stepk XT1 x=x-1 x = (1 +x)3
0 1.3 1.3 1.3
1 1.4493 1.197 1.32
2 0.9087 0.7150 1.3238
3 -5.737 —0.6345 1.3247
4 1.3247

Numerical Solution of Simultaneous Nonlinear Equations

The techniques illustrated here will be demonstrated for two simultaneous equatf¢nsy}= 0 and
a(x, y) = 0. They immediately generalize to more than two simultaneous equations.

The Method of Successive Substitutions
The two simultaneous equations can be written in various ways in equivalent forms

x = F(x,y)
y =G(x,y)

and the method of successive substitutions can be based on

Xear = F(Xk’yk)
Yiea = G(Xk’yk)

Again, the procedure is of the first order and a necessary condition for convergence is

oG

0x

oG
<

+7
oy

1

oF
ox

+6j<1
ay

in the iteration neighborhood of the true solution.

The Newton-Raphson Procedure

Using the two simultaneous equation, start from an approximatexsay)( obtained graphically or
from a two-way table. Then, solve successively the linear equations

of of
Ax, &(Xk'yk) + Ay, a*y(xk-yk) = _f(xk’yk)

Ax, %(Xk’yk) + By, %(Xk’yk) = _g(xk'y")

for Ax, andAy,. Then, the&k + 1 approximation is given from,,; =X, + AX,Yi.1 = Y + A, A modification
consists in solving the equations wik), ) replaced by, y,) (or another suitable pair later on in the
iteration) in the derivatives. This means the derivatives (and therefore the coefficidmts/of) are
independent ok. Hence, the results become
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= £ (%) (09/09) (%o: Yo) + 9% %) (9F /0Y) (%o.Yo)
K (af/ax)(xo,yo) ag/dy (xO,yO) af/ay(xo,yo)(ag/ax)(xo,yo)

g( k,yk) of /ox (xo,yo) ( k,yk) ag/ax)(xo,yo)
(af/ax)( o’yo)(ag/ay)( o'yo) (af/ay)( O,yo)(ag/ax)( o’yo)

AX

Ay, =

andX,,; = AX, + X, Yie1 = AV, + Y. Such an alteration of the basic technique reduces the rapidity of
convergence.

Example
f(x,y) = 4x® +6x = 4xy + 2y* - 3
g(x,y) = 2x* = dxy +y*

By plotting, one of the approximate roots is found tacpe 0.4,y, = 0.3. At this point, there results
of/ox = 8, of/dy = —0.4,0g/0x = 0.4, anddg/dy = —1. Hence,

=X, +AX, =X +_f(xklyk)_0.4g(xk,yk)

ket Tk ko Tk 8(-1) - (-0.4)(0.4)

= X, —0.127 55f (., ) - 0.051029(x,. Y, )

X

and

Yier = Y ~0.05102f(x,,y, ) +1.020 41g(x,.y, )

The first few iteration steps are shown in the following table.

Stepk X ) fXe Y 9% Y

0 0.4 0.3 -0.26 0.07

1 0.43673 0.24184 0.078 0.0175
2 0.42672 0.25573 -0.0170 -0.007
3 0.42925 0.24943 0.0077 0.0010

Methods of Perturbation
Let f(x) = 0 be the equation. In general, the iterative relation is

where the iteration begins witfy as an initial approximation arw, is some functional.

The Newton-Raphson ProcedurEhis variant chooses, = f'(x) wheref' = df/dx and geometrically
consists of replacing the graphf@f) by the tangent line at = x, in each successive stepfifx) and
f"(x) have the same sign throughout an inteavdlx < b containing the solution, witf(a) andf(b) of
opposite signs, then the process converges starting from, anyhe intervala < x < b. The process is
second order.
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Example

(0.5 -05

f(x)=x-1+
() =x 0.3

f'(x) =1-2.31050.5]"

An approximate root (obtained graphically) is 2.

Stepk Xg f(x) (%)

0 2 0.1667 0.4224
1 1.605 —-0.002 0.2655
2 1.6125 -0.0005

The Method of False Positiorfhis variant is commenced by findingandx, such thaf(x,) andf(x,)
are of opposite signs. Them, = slope of secant line joiningy| f(x,)] and [, f(x,)] so that

In each following stepy, is the slope of the line joining,] f(X)] to the most recently determined point
wheref(x) has the opposite sign from thatfef). This method is of first order.

The Method of Wegstein

This is a variant of the method of successive substitutions which forces or accelerates convergence. The
iterative procedurg,,, = F(x) is revised by settings,,, E(x) and then takingy,, = qx+ (1 —0) X,,, -
Wegstein found that suitably chosgsare related to the basic process as follows:

Behavior of Successive Range of
Substitution Process Optimum q

Oscillatory convergence 0g<1/2
Oscillatory divergence 1/2g<1
Monotonic convergence g<o0
Monotonic divergence lgq

At each stepg may be calculated to give a locally optimum value by setting

X X

_ k1~ Mk
I % +
X ~ Xt X

The Method of Continuity

In the case of equations im unknowns, whem is large, determining the approximate solution may
involve considerable effort. In such a case, the method of continuity is admirably suited for use on either
digital or analog computers. It consists basically of the introduction of an extra variable imto the
equations

and replacing them by
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fi(xl,xz,...,xn,)\)zo, i=1..,n

whereA is introduced in such a way that the functions depend in a simple way\ugnmh reduce to
an easily solvable system far= 0 and to the original equations fdor= 1. A system of ordinary
differential equations, with independent variables then constructed by differentiating with respect
to A. There results

wherex,, ..., X, are considered as functionsofThe equations are integrated, with initial conditions
obtained withA = 0, fromA = 0 toA = 1. If the solution can be continuedXc= 1, the values of,,

..., X, for A = 1 will be a solution of the original equations. If the integration becomes infinite, the
parameteA must be introduced in a different fashion. Integration of the differential equations (which
are usually nonlinear in) may be accomplished on an analog computer or by digital means using
techniques described in a later section entitled “Numerical Solution of Ordinary Differential Equations.”

Example
f(xy)=2+x+y-x>+8xy+y’ =0
g(xy)=1+2x+3y+ x> +xy-ye* =0
IntroduceA as
f(xyA)=(2+ x+y)+)\(—x2 +8xy + y3) =0
g(x,y:A) = (1+2x-3y) + }\(x2 +xy - yex) =0
For A = 1, these reduce to the original equations, but) fer0, they are the linear systems
X+y=-2
2x-3y=-1
which has the unique solution= -1.4,y = —0.6. The differential equations in this case become

otk o oy __of

oxdx dydA OA

dgdx  dgdy __dg
oxdh  dydr  OA

or
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of dg _of ag
dx FyaT A O
d\ ~ 9f og _of g
ox dy 0y ox
of ag of dg
dy _ arox  axor
dn of dg _of dg
axdy Ay ox

Integrating inA, with initial valuesx = —-1.4 and/ = —0.6 at\ = 0, fromA = 0 toA = 1 gives the solution.

Interpolation and Finite Differences

The practicing engineer constantly finds it necessary to refer to tables as sources of information.
Consequently, interpolation, or that procedure of “reading between the lines of the table,” is a necessary
topic in numerical analysis.

Linear Interpolation

If a functionf(x) is approximately linear in a certain range, then the réQ F f(x)]/(X; — %)= f[Xos
x| is approximately independent xfandy, in the range. The linear approximation to the funct{gn
X < X < X4, then leads to the interpolation formula

f(x)= f(XO)+(X_X0)f[XO'X1] = f(x0)+ Z__))(fo [f(xl)_ f(xo)]
= (% =9)1(x) = (x = %) 1(x)

X, = %o

Divided Differences of Higher Order and Higher-Order Interpolation

The first-order divided differendgx,, x,] was defined above. Divided differences of second and higher
order are defined iteratively by

f[xl,xz] - f[xo,xl]

X, = X,

f[xo,xl,xz] =

f[Xl,...,Xk] - f[XO,Xl,--~ka_1]
X, — Xp

f[xo,xl,...,xk] =
and a convenient form for computational purposes is

K f(xj

f[xo,xl,...,xk] = ZO' (Xj _Xo)(xj _Xl)"'(xi —Xk)

for anyk = 0, where thé means the ternmx(—x) is omitted in the denominator. For example,
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f(x) b, flx)

f
%o = 5)(% = %) (% = %) (% = %) (= %) (% ~ %)

f[xo,xl,xz] :(

If the accuracy afforded by a linear approximation is inadequate, a generally more accurate result may
be based upon the assumption ttf&t may be approximated by a polynomial of degree 2 or higher
over certain ranges. This assumptions leaddetoton’s fundamental interpolation formudath divided
differences:

f(x)= f(xo) + (x - xo)f[xo,xl] + (x - xo)(x - xl)f[xo,xl,xz]
+(x = %) (x=x)-(x = xn_l)f[xo,xl,...,xn] +E,(X)
whereE,(x) = error = [1/0 + 1)!]f™D (€)T(X) where mink,, ..., X) <& < maxfy, X,..., X, X) andTi(x)

= (X —=X)(X —X%y)...(Xx—=x,). In order to use this most effectively, one may first form a divided-difference
table. For example, for third-order interpolation, the difference table is

Xo f(xo) flx

X, f(xl) 0% f[ %y, %, X

IR AT o B s B
X, f(xs) 21733

where each entry is given by taking the difference between diagonally adjacent entries to the left, divided
by the abscissas corresponding to the ordinates intercepted by the diagonals passing through the calcu-
lated entry.

Example. Calculate by third-order interpolation the value of cosh 0.83 given cosh 0.60, cosh 0.80,
cosh 0.90, and cosh 1.10.

X, = 0.60| 1.185 47

0.7598
X, =0.80 | 1.33743 0.6560

0.9566 0.1586
X, =0.90| 1.43309 0.7353

1.1772

%, =1.10 | 1.66852

With n = 3, we have

cosh0.83 = 1.185 47 +(0.23)(0.7598) + (0.23) (0.03) (0.6560)
+(0.23)(0.03)(-0.07)(0.1586) = 1.364 64

which varies from the true value by 0.000 04.

Lagrange Interpolation Formulas

The Newton formulas are expressed in terms of divided differences. It is often useful to have interpolation
formulas expressed explicitly in terms of the ordinates involved. This is accomplished by the Lagrange
interpolation polynomial of degree

I €
y(x)— ;(x—xjin’(xj) f(xj)
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where

1) = (k- 5) (=) (-
() = (5 =) =) (x - x))
where & —x) is the omitted factor. Thus,
f(x) = y(x) + E,(¥)

1
(n+2)!

E,00 = )1 )(e)

Example. The interpolation polynomial of degree 3 is

(e )(mxa)x =) oy, (o) (x=x)(x =)

=) =)0 =) 0 o ) )

e O R e ) LY

be =)0 =)0 =) T (6 = %) 06 =) (6 =)

y(x) = ( ) f(x1)

X
XO

Thus, directly from the data

f) 1 1 -1 2

we have as an interpolation polynomy&X) for (x):

x=1)(x=3)(x - ) X(x = 3)(x - 4)
E( 0-1)(0-3)(0- lD(l 0)(i- 3)(1 4)
_ x(x - 1) X = O x-3)
e 2 e ole- -9

Other Difference Methods (Equally Spaced Ordinates)

Backward DifferencesThe backward differences denoted by

Of (x) = f(x) - f(x—h)

0%f(x) = Of (x) = Of (x = h)

Df"(x) = 0" f(x) - 0" f(x = h)

are useful for calculation near the end of tabulated data.

Central DifferencesThe central differences denoted by
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_ ho_ .0 _ hDO
61‘(x)—f§<+ED f% >0
n — xn-1 hD_ n-1 _h|:|
5"H(x) =5 f%+ED 5" k o0

are useful for calculating at the interior points of tabulated data.
Also to be found in the literature are Gaussian, Stirling, Bessel, Everett, Comrie differences, and so forth.

Inverse Interpolation

This is the process of finding the value of the independent variable or abscissa corresponding to a given
value of the function when the latter is between two tabulated values of the abscissa. One method of
accomplishing this is to use Lagrange’s interpolation formula in the form

NERTRVE . O
Y022 1y )

wherex is expressed as a functionyfOther methods revolve about methods of iteration.

Numerical Differentiation

Numerical differentiation should be avoided wherever possible, particularly when data are empirical and
subject to appreciable observation errors. Errors in data can affect numerical derivatives quite strongly
(i.e., differentiation is a roughening process). When such a calculation must be made, it is usually
desirable first temooththe data to a certain extent.

The Use of Interpolation Formulas

If the data are given over equidistant values of the independent vagiablénterpolation formula, such

as the Newton formula, may be used, and the resulting formula differentiated analytically. If the
independent variable is not at equidistant values, then Lagrange’s formulas must be used. By differen-
tiating three- and five-point Lagrange interpolation formulas, the following differentiation formulas result
for equally spaced tabular points.

Three-point FormulasLet x,, x;, andx, be the three points

(o) = g 1) 410) = 1]+ 760
(i) = ol 1) 1))+ 5 1760
() = 4] 1) - 41(x) +31()] + & 176)

where the last term is an error term and;mir &€ < max X

Five-point Formulas.Let x,, X;, X,, X3, andx, be the five values of the equally spaced independent
variable and; = f(x).

' 1 h*
(%) = onl 25 + 481, - 36, +161, - 3f, +?f( ()
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. 1 h*
f'(x)= o ~3f ~10f, +181, 6f3+f4]—%f()(s)

4
'(x,) = 12h[f - 8f, + f3—f4]+%f(v)(s)

t(x,) = 12h[ f, +6f —18f, +10f, +3f] fO(e)
f'(x,) = 12h[3f - 16f, +36f, - 48f, +25f]+—f )(e)

and the last term is again an error term.

Smoothing Techniques

These techniques involve the approximation of the tabular data by a least squares fit of the data using
some known functional form, usually a polynomial. In place of approximétiidoy a single least
squares polynomial of degreeover the entire range of the tabulation, it is often desirable to replace
each tabulated value by the value taken on by a last squares polynomial ohdetgesnt to a subrange

of 2M + 1 points centered, where possible, at the point for which the entry is to be modified. Thus, each
smoothed value replaces a tabulated valuef; lzef(x) be the tabular points anygl= smoothed values.

A first-degree least squares with three points would be

= 4[5f, +2f, - ]
Y1 :%[fo +f+ fz]
Y, =3[~ 1, +2f, +5f,

A first-degree least squares with five points would be

= 4[3f, +2f, + f, - 1,]
Y, = b[4f, + 31, + 2, + 1]
:%[f0+ f+f,+f+ f4]
Ys = [ fo + 21, +3f, + 4f]
= 4~ f, + f, +2f, +3f,]
Thus, for example, if first-degree, five-point least squares are used, the central formula is used for all

values except the first two and the last two, where the off-center formulas are used. A third-degree least
squares with seven points would be
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Yo = %[39f, +8f, - 4f, - 4f, + f, + 4, - 2f |
Y, = $[8f, +19f, +161, +6f, - 4f, - 7f, +4f,]
Y, = [ -4f, +161, +191, +12f, + 2f, - 4, +{,]
Y, = ﬁ[—ZfO +3f, +6f, + 7f, + 61, + 31, —2f6]
Yo = d[fy — 41, + 21, +12f, +19f, +161, - 4f]
Yo = H[4f, = 71, - 4f, + 61, +16, +191, +8f]
Yo = | -2f, +4f, + T, - 4f, - 4f, +81, +39f|
Additional smoothing formulas may be found in the references. After the data are smoothed, any of the

interpolation polynomials, or an appropriate least squares polynomial, may be fitted and the results used
to obtain the derivative.

Least Squares Method

Parabolic. For five evenly spaced neighboring abscissas laleled,, X,, X;, andx,, and their ordinates
f,, f_, fo, 1, @andf,, assume a parabola is fit by least squares. There results for all interior points, except
the first and last two points of the data, the formula for the numerical derivative:

o1
o= ol 2ttt +21,]

For the first two data points designated by 0 land

f'(0) = Elh ~21(0) +13f(h) +17f (2h) - 97 (3n)]

oy 1
f'(h) = ﬁ[—11f(o) +3f(h) +7f(2h) + (3n)]
and for the last two given by —h anda:

f'( _h)zflh ~11f(a) +3f(a —h) + 7f (o = 2h) + f(a ~ 3n)]

f(a) = Ilh ~21f(a) +13f(a - h) +17f (a - 2h) - 9(a — 3h)]
Quartic (Douglas-Avakian)A fourth-degree polynomial = a + bx + ¢ + dx + ex is fitted to seven
adjacent equidistant points (spacimgafter a translation of coordinates has been made sa th&t
corresponds to the central point of the seven. Thus, these may be chjle@-3h, 0, h, 2h, and 3.

Letk = coefficienth for the seven points. This is, ink& = —3. Then, the coefficients for the polynomial
are
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524 f(kh)-245Y k*f(kh)+21Y k*f(kh)

a:
024
3972 Kf (kh) 72 k3£ (kh)
1512h  216h
-840 f(kh) + 679§ k2f(kh)- 67 k*f(kh)
€= 3168h?
—72 kf(kh)+§ k3£ (kh)
d= y
216h
725 f(kh)-67F k2f(kh)+7 k*f(kh)
e=

3168h*

where all summations run frok= -3 tok = +3 andf(kh) = tabular value akh. The slope of the
polynomial atx = 0 isdy/dx = h

Numerical Integration

Numerical evaluation of the finite integrd[; f(x) dx is carried out by a variety of methods. A few are
given here.
Newton-Cotes Formulas (Equally Spaced Ordinates)

Trapezoidal RuleThis formula consists of subdividing the interaat x < b into n subintervalsa to a
+h a+htoa+ 2h, ..., and replacing the graph f{k) by the result of joining the ends of adjacent
ordinates by line segments.fli= f(x) = f(a + jh), f, = f(a), andf, = f(b), the integration formula is

b
J'a f(x) dng[fO +2f, +2f, +-- 421 + ]+ E,

where E,| = (h¥12)f"(€)| = [(b — a)¥12n?|f"(€)|, a < € < b. This procedure is not of high accuracy.
However, iff"(x) is continuous ira < x < b, the error goes to zero as?//n - oo,

Parabolic Rule (Simpson’s RuleJhis procedure consists of subdividing the inteevalx < b into n/2
subintervals, each of lengtlin,2vheren is an even integer. Using the notation as above the integration
formula is

b
If(x)dx:g[fo+4f1+2f2+4f3+~--+4fn_3+2fn_2+4fn_l+fn]+En
where
_nh® _(b-a)° ()
\n\—ﬁ‘f (s)‘—w‘f (s)‘ a<e<b

This method approximatdéx) by a parabola on each subinterval. This rule is generally more accurate
than the trapezoidal rule. It is the most widely used integration formula.
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Weddle’s RuleThis procedure consists of subdividing the integr&lx < b into n/6 subintervals, each
of length &, wheren is a multiple of 6. Using the notation from the trapezoidal rule, there results

+ f

n-3 n-2

b
L f(x) dx:%[f0 +5f + f, +6f, + f, +5f, +2f, +5f + f, +..- +6f +5f  + fn]+En
Note that the coefficients gffollow the rule 1, 5, 1,6, 1,5, 2,5,1, 6, 1, 5, 2, 5, etc.... This procedure

consists of approximatelgx) by a polynomial of degree 6 on each subinterval. Here,

h7
c -2 o))

Gaussian Integration Formulas (Unequally Spaced Abscissas)

These formulas are capable of yielding comparable accuracy with fewer ordinates than the equally spaced
formulas. The ordinates are obtained by optimizing the distribution of the abscissas rather than by
arbitrary choice. For the details of these formulas, Hildebrand (1956) is an excellent reference.

Two-Dimensional Formula

Formulas for two-way integration over a rectangle, circle, ellipse, and so forth, may be developed by a
double application of one-dimensional integration formulas. The two-dimensional generalization of the
parabolic rule is given here. Consider the iterated inte@r[aﬂ f(x, y) dx dy Subdividec < x < d into

m (even) subintervals of length= (d — ¢)/m, anda <y < b into n (even) subintervals of length= (b

—a)/n. This gives a subdivision of the rectangle y < b andc < x < d into subrectangles. Lef =c

+jh, y,=a + jk, andfiyj = f(x;, yj). Then,

J’bj'df(x,y) dx dy:%[(f00 +Af +2f, e+ fmo) +4(f01 +A4f +2f, 4ot fml)
a Jc 9 ' ' ' ’ " ’ ’

+ 2(fo,2 +4f1,2 +2f2,2 oot fm,2)+'”+(f +4f1,n +2f2,n oot fm,n)] + Em,n

on

where
O | o*f(e,, 0*f(e,,n, )0
E L ( 14”1) " ( 24r]2)D
: 90@ (14 ay

whereg; andg, lie inc <x <d, andn, andn, lieina<y<h.

Numerical Solution of Ordinary Differential Equations

A number of methods have been devised to solve ordinary differential equations numerically. The general
references contain some information. A numerical solution of a differential equation means a table of
values of the functioly and its derivatives over only a limited part of the range of the independent
variable. Every differential equation of ordeican be rewritten as first-order differential equations.
Therefore, the methods given below will be for first-order equations, and the generalization to simulta-
neous systems will be developed later.

The Modified Euler Method

This method is simple and yields modest accuracy. If extreme accuracy is desired, a more sophisticated
method should be selected. Let the first-order differential equatiay/the = f(x, y) with the initial
condition &, o) (i-e.,y =Y, whenx = X,). The procedure is as follows.
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Step 1. From the given initial conditiong,,(y,) compute y, =f(X,, Vo) and yy = Pf(X,, Yo)/0X] +
[0f(%y, Yo)/OY] ¥y Then, determing, =y, + hy, + (h%2) y;, whereh = subd|V|S|on of the independent
variable.

Step 2. Determiney; Xy, y,) wherex, = X, + h. These prepare us for the following.

Predictor Steps.
Step 3. Fon = 1, calculate(,,), = Y,, + 2h ;.
Step 4. Calculatdy;,,); HX1 Vel
Corrector Steps.

Step 5. Calculatey(,,), =y, + (V2)[(y.,), +¥,]. wherey, and y, without the subscripts are the
previous values obtained by this process (or by steps 1 and 2).

Step 6 (yr'1+1)2 :f[xn+1r (yn+1)2-|'
Step 7. Repeat the corrector steps 5 and 6 if necessary until the desired accuracy is prgduced in

!
yn+1 :

Example. Consider the equatioyi = 2y? + x with the initial conditions/, = 1 whenx, = 0. Leth =
0.1. A few steps of the computation are illustrated.

Step
1 Vi =2y2 +X, =2
Yo =1+4y,y, =1+8=9
y, =1+(0.1)(2) + [(0.1)2 /2]9 =1.245
2 y; = 2y? +x, =3.100+0.1=3.200
3 (y2)1 =y, +2hy; =1+ 2(0.1)3.200 = 1.640
4 (v5), =2(y,); +x, =5592
5 (va), =¥, + (0. J/2)[(y2 + yl] 1.685
6 (n),= (yz)§ +x, =58
5 (repeat) (y2)3 L +(0. 05)[( ) + y1] =1.699
6 (repeat) (yé)3 (yz)z +X, =59

and so forth. This procedure. may be programmed for a computer. A discussion of the truncation error
of this process may be found in Milne (1953).
Modified Adam’s Method

The procedure given here was developed retaining third differences. It can then be considered as a more
exact predictor-corrector method than the Euler method. The procedure is as folldwaXor f(x, y)
andh = interval size.

Steps 1 and 2 are the same as in Euler method.

Predictor Steps.

Step 3. Y1 = Yo + (V24)[55y;, - 59y, +37y/_, -9y ], wherey,,y’_,, etc..., are calculated in
step 1.
Step 4. (yr’1+1)1 :f[xn+1r (yn+1)J]'
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Corrector Steps.

Step 5. Yn+1)2 yn + (h/24)[9(yn+1)1 + 19yn 5y;1_1 + yr;_zl-

Step 6. (V) FXos Wowd)al-
Step 7. lterate steps 5 and 6 if necessary.

Runge-Kutta Methods

These methods are self-starting and are inherently stable. Kopal (1955) is a good reference for their
derivation and discussion. Third- and fourth-order procedures are given beldyidior f(x, y) andh
= interval size.

For third-order (error h?).

ko = hf(x,.y,)
k, = hf(x, +3h,y, +3k,)
k, = hf(x, +hy, +2k —k)

and

Yoo =V, + 3k, + 4K +K,)

for all n = 0, with initial condition X, Yo)-
For fourth-order (errox hd),

k, = hf(xn, )
=hf(x, + h,y, + 1k,
=hf(x, + %hy, + %k)

k, = hf(xn+hyn+@)

and

Yo = Yo + 26(Ky + 2K, + 2K, +k,)

Example. (Third-order) Letdy/dx = x — 2y, with initial conditiony, = 1 whenx, = 0, and let = 0.1.
Clearly, x, = nh. To calculatey,, proceed as follows:

k, = 0.4[x, - 2y,] =-02
k =0.10.05-2(1-0.1)] = -0.175
k, =0.10.1-2(1-0.35+0.2)] = -0.16

y, =1+%(-0.2-0.7-0.16) = 0.8234
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Equations of Higher Order and Simultaneous Differential Equations

Any differential equation of second- or higher order can be reduced to a simultaneous system of first-
order equations by the introduction of auxiliary variables. Consider the following equations:

dizxq. %‘FZZEX
dt? Xydt
d’y _ dy 2
—tXxy— =7+t
dt? Xydt
2
d-z dz «
— +XZ—+X=€
dt dt

In the new variableg, = X, X, =V, X; = z, X, = dx,/dt, X; = dx/dt, andx, = dx/dt, the equations become

dx,
—= =X

a

dx, _

a  °

dx,

—2 =X

da  °

dx

di'[4 = =XyXX, = Xy + €
dx, 2
dits = —XgX,Xg + 7+t
dx

Tf = X XgXg =X + €

which is a system of the general form

dx,

wherei = 1, 2, ...,n. Such systems may be solved by simultaneous application of any of the above
numerical techniques. A Runge-Kutta method for

dx
— = f(t
dt (txy)

&
dt g(t, X y)

is given below. The fourth-order procedure is shown.
Starting at the initial conditions, y,, andt,, the next valueg, andy, are computed via the equations
below (whereAt =h, t =h + tj,l):
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ks = hf(to +h, X, K, Y, +|2) ly = hg(to +Nx, K.Y, +|2)
and
X, = %+ ok, + 2k + 2K, + k)
Vi = Yo +}(/3(|0 +2|1 +2|2 +|3)

To continue the computation, replagex,, andy, in the above formulas by =t, + h, x;, andy, just
calculated. Extension of this method to more than two equations follows precisely this same pattern.

Numerical Solution of Integral Equations

This section considers a method of numerically solving the Fredholm integral equation of the second kind:

U(x) = 1)+ Lb Ku)de for u(x)

The method discussed arises because a definite integral can be closely approximated by any of several
numerical integration formulas (each of which arises by approximating the function by some polynomial
over an interval). Thus, the definite integral can be replaced by an integration formula which becomes

u(x) = f(x) +A(b-a) § ck(xt, )u(ti)é

wheret,, ..., t, are points of subdivision of thieaxis,a <t < b, and thecs are coefficients whose values
depend upon the type of numerical integration formula used. Now, this must hold for all vakies of
wherea < x < b; so it must hold fox =t;, X = t,,..., x = t,. Substituting fox successively,, t,,..., t,,

and settingu(t) = v, andf(t) =f;, we getn linear algebraic equations for theinknownsu,,..., u,. That is,

b = 1+ (b= a)[ek(t t)w + k(. L)u + + ekt by T=12..n
Theseu; may be solved for by the methods under the section entitled “Numerical Solution of Linear
Equations.”

Numerical Methods for Partial Differential Equations

The ultimate goal of numerical (discrete) methods for partial differential equations (PDESs) is the
reduction of continuous systems (projections) to discrete systems that are suitable for high-speed com-
puter solutions. The user must be cautioned that the seeming elementary nature of the techniques holds
pitfalls that can be seriously misleading. These approximations often lead to difficult mathematical
guestions of adequacy, accuracy, convergence, stability, and consistency. Convergence is concerned with
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the approach of the approximate numerical solution to the exact solution as the number of mesh units
increase indefinitely in some sense. Unless the numerical method can be shown to converge to the exact
solution, the chosen method is unsatisfactory.

Stability deals in general with error growth in the calculation. As stated before, any numerical method
involves truncation and round-off errors. These errors are not serious unless they grow as the computation
proceeds (i.e., the method is unstable).

Finite Difference Methods

In these methods, the derivatives are replaced by various finite differences. The methods will be illustrated
for problems in two space dimensioms ) or (X, f) wheret is timelike. Using subdivision&x = h and

Ay =k with u(i h, jK) = u;, approximatel};; = [(U.; — W;)/h] + O(h) (forward difference), a first-order

[O(h)] method, ory,|;; = [(U.y; — U_4)/2h] + O(h?) (central difference), a second-order method. The
second derivative is usually approximated with the second-order metiod[(U.,; — 24 + U_;;)/h7]

+ O(h?)].

Example. Using second-order differences fgg andu,,, the five-point difference equation (with=

K) for Laplace’s equation,, + u,, = 0 isu;; =1/4[u,; + U_y; + U,y + U;4]. The accuracy i©(h?). This

model is calledmplicit because one must solve for the total number of unknowns at the unknown grid
points {, j) in terms of the given boundary data. In this case, the system of equations is a linear system.

Example. Using a forward-difference approximation fgrand a second-order approximation dgy
the diffusion equatiom, = u,, is approximated by thexplicit formulau,,; = ru;_q; + (1 — 2)u;; + ru,y;.
This classic result permits step-by-step advancement indinection beginning with the initial data at
t =0 ( = 0) and guided by the boundary data. Here, the termit/(Ax)? = k/h? is restricted to be less
than or equal to 1/2 for stability and the truncation err@(i¢ + k).

The Crank-Nicolson implicit formula which approximates the diffusion equatieru,, is

—TAU_y o + (L4 200U =T AU L, = (1= A)u +[1— 2r(1—)\)] U +r(1-Au,,
The stability of this numerical method was analyzed by Crandall (Ames, 1993) whare thtability
diagram is given.

Approximation of the time derivative i, = u,, by a central difference leads to an always unstable
approximation — the useless approximation

u u +2r(u —2ui'j+ui_1'j)

e = U 41,
which is a warning to be careful.

The foregoing method isymmetricwith respect to the point, (j), where the method is centered.
Asymmetric methods have some computational advantages, so the Saul'yev method is described (Ames,

1993). The algorithms (= k/h?)
@+r)u,,, =u; + r(ui_lyj+l —u+ uim.) (Saul'yev A)

(@+r)u =y, + r(Ui+1,j+1 Ut ui—l,j) (Saul’yev B)

are used as in any one of the following options:

1. Use Saul'yev A only and proceed line-by-line in tj¢ direction, butalways from the left
boundary on a line.

2. Use Saul'yev B only and proceed line-by-line in tG§ direction, butalwaysfrom the right
boundary to the left on a line.

© 1999 by CRC Press LLC



19-110 Section 19

3. Alternate from line to line by first using Saul'yev A and then B, or the reverse. This is related to
alternating direction methods.

4. Use Saul'yev A and Saul'yev B on the same line and average the results for the final answer (A
first, and then B). This is equivalent to introducing the dummy varidghjesdQ;; such that

(1+r)R,=U; + r(R—l,jﬂ -U, +Ui+1,j)

(l+ r)Qi,j+1 = Ui,j + r(Qi+1,j+1 - Ui,j +Ui—1,j)

and

Uju= %(Pi,j*«l + Qi,j+1)

This averaging method has some computational advantage because of the possibility of truncation error
cancellation. As an alternative, one can retairPthandQ;; from the previous step and repladde and
U..q; by P;; andP,,,;, respectively, antl;; andU,_;; by Q; andQ,_,;, respectively.

Weighted Residual Methods (WRMs)

To set the stage for the method of finite elements, we briefly describe the WRMs, which have several
variations — the interior, boundary, and mixed methods. Suppose the equationfiswherelL is the
partial differential operator arfds a known function, of sayandy. The first step in WRM is to select
a class of known basis functiohs(e.qg., trigonometric, Bessel, Legendre) to approximeétey) as ~
>a b (x,y) =U(, Yy, 9. Often, theb, are selected so thbl(x, y, § satisfy the boundary conditions.
This is essentially thénterior method If the b, in U(x, y, 8 are selected to satisfy the differential
equations, but not the boundary conditions, the variant is calldzbthrelary methodVhen neither the
equation nor the boundary conditions are satisfied, the method is saithireldeThe least ingenuity
is required here. The usual method of choice is the interior method.

The second step is to select an optimal set of constants 1,2, ...,n, by using the residu&t(U)
= LU —f. This is done here for the interior method. In the boundary method, there are a set of boundary
residualR;, and, in the mixed method. BoR andR;. Using the spatial average, (V) = [wvdV the
criterion for selecting the values afis the requirement that tmespatial averages

(b.R(U)=0, i=22..,n

These represemt equations (linear if the operatbris linear and nonlinear otherwise) for the
Particular WRMs differ because of the choice ofijse The most common follow.

1. SubdomainThe domairV is divided inton smaller, not necessarily disjoint, subdoma'/pwith
wi(x, y) = 1if (x,y) isinV,, and 0 if &, y) is not inV,.

2. Collocation Selectn pointsP; = (x;, ) in V with w(P)) = &(P — P,), where[,g(P)3(P — P)dP =
@(P,) for all test functiongp(P) which vanish outside the compact $efThus, {, Ry = [,8(P —
P)RedV = RJU(P) = 0 (i.e., the residual is set equal to zero atntipeintsP).

3. Least squareslere, the functiond(a) = [, RZ dV, wherea = (a,, ..., a,), is to be made stationary
with respect to thal-. Thus, 0 =(3I/6aj = ZIVRE(GRE/Gai)dV, withj =1, 2, ....n Thevvj in this case
aredR/0a,.

4. Bubnov-GalerkinChoosew(P) = b(P). This is perhaps the best-known method.

5. Stationary Functional (Variational) Methdd/ith ¢ a variational integral (or other functional), set
d0gUJ/0a = 0, wherg = 1, ...,n, to generate the algebraic equations.
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Example. u, +u, = -2, withu = 0 on the boundaries of the squarexl,y = +1. Select an interior
method withU = a,(1 —x?)(1 —y?) + ax®y3(1 —x?)(1 —y?), whereupon the residuBL(U) = 2a,(2 —x?
-y + 23,[(1 — )Y} (1 —y?) + (1 — 67 — (1 —x?)] + 2. Collocating at (1/3, 1/3) and (2/3, 2/3) gives
the two linear equations —-829 + 32,/243¢ + 2 = 0 and —28/9 — 40@,/243 + 2 = 0 forg, anda,.

WRM methods can obviously be used as approximate methods. We have now set the Stdige for
elements.

Finite Elements

The WRM methods are more general thanfthite element4FE) methods. FE methods require, in
addition, that the basis functions be finite elements (i.e., functions that are zero except on a small part
of the domain under consideration). A typical example of an often used basis is that of triangular elements.
For a triangular element with Cartesian coordinatgy,), (%, ¥,), and &, y), define natural coordinates

L,, L,, andL; (L, « (X, ) so thatl; = AJA where

i A
1 g
A—jdet% 5 yzD
H % ¥

is the area of the triangle and
a1 x y O
O
A :%deta X YaQ
B % ¥
1 y, 0
» a % s
A, = det X yng
H % Y%A
a x y0
A :%det% X, Yoq
H x Vv

ClearlyL, +L, +L; =1, and thé; are one at nodeand zero at the other nodes. In terms of the Cartesian
coordinates,

0 K,Y5 = X3Yo0 Yo = Yar X =X, A0
|11['_ 1 [l23 3¥2r Y2 T Y3 A3 2%<D
2D_ﬂ[lxay1_x1y3v Y=Y X T X 0

B‘SH %ﬁyz XY 1T Y X7 X %’E

is the linear triangular element relation.

Tables of linear, quadratic, and cubic basis functions are given in the literature. Notice that while the
linear basis needs three nodes, the quadratic requires six and the cubic basis ten. Various modifications,
such as the Hermite basis, are described in the literature. Triangular elements are useful in approximating
irregular domains.

For rectangular elements, tbleapeaufunctions are often used. Let us illustrate with an example. Let
Uy U, =Q, 0 <x<2,0<y<2,uX) 2)=1u0,Yy) = 1,u(x 0) =0,u(2,y) =0, andQ(x, y) =
Qwo(x — 1R(y - 1),
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M xz0

3(x) = x=0

Using four equal rectangular elements, map the elefneith vertices at (0, 0) (0, 1), (1, 1), and (1,

0) into the local (canonical) coordinaté€s 1f), — 1< & <1, — 1< n <1, by means ot = 1/2¢€ + 1),y

= 1/2(h + 1). This mapping permits one to develop software that standardizes the treatment of all
elements. Converting td,(n) coordinates, our problem becomgs+ u,, = 1/4Q, - 1<& <1, - 1<

n<1Q=QwoE - 1p(n - 1).
First, a trial functionu &, n) is defined asi(§, n) = M (€, n) = Z‘j‘zlA,-(g(E, n) (in element) where
the @ are the two-dimensional chapeau functions

o, =[31-8)20-n)] @ =[3(+&)3(-n)
0, =[3(1+8)3(+n)] o =[3(-8)3@+n)]

Clearly @ take the value one at nodeprovide a bilinear approximation, and are nonzero only over
elements adjacent to node

Second, the equation residiRd = 0°u — 1/4Q is formed and a WRM procedure is selected to
formulate the algebraic equations for #ye This is indicated using the Galerkin method. Thus, for
elementl, we have

JJ(U& Uy, _Q)(P.(E,r]) d& dn =0, i=1..4

Applying Green’s theorem, this result becomes

(o) tonf e oo oo 155

Using the same procedure in all four elements and recalling the property tiahteach element are
nonzero only over elements adjacent to nodes the following nine equations:

ZQJZAE% (p, (pl ((p,) E 2Q g g dn
_i'[’oe(u*c*+u”°")‘pdszo’ n=12..,9

where thec; andc, are the direction cosines of the appropriate elengrtoundary.

Method of Lines

The method of lineswhen used on PDEs in two dimensions, reduces the PDE to a system of ordinary
differential equations (ODEs), usually by finite difference or finite element techniques. If the original
problem is an initial value (boundary value) problem, then the resulting ODEs form an initial value
(boundary value) problem. These ODEs are solved by ODE numerical methods.
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Example. u, =u, + U? 0 <x< 1, 0 <t, with the initial valueu(x, 0) =x, and boundary data0, t) =
0, u(1, t) = sint. A discretization of the space variablg {s introduced and the time variable is left
continuous. The approximation i§  &.,( — 21 +u_)/h? + u>. Withh = 1/5, the equations become

Uy(t) = 0

u, = Tls[uz - 2u1] +uf

u, = %[u3 -2u, + ul] +Uu2

u, = 2—15[u4 -2u, + uz] +U2
u, :2—15[5int—2u4 +u3]+uf
ug =sint

andu,(0) = 0.2,u,(0) = 0.4,u,(0) = 0.6, ands,(0) = 0.8.

Discrete and Fast Fourier Transforms
Let x(n) be a sequence that is nonzero only for a finite number of samples in the intemval N —
1. The quantity

N-1

X(k) = Z x(n)e_i(mN)”k, k=01...,N-1

is called thediscrete Fourier transfornfDFT) of the sequencen). Its inverse (IDFT) is given by

N-1

X(n):;ZX(k)ei(mN)”k, n=01... N-1 (i2:—1)

Clearly, DFT and IDFT are finite sums and there Mrigequency values. Also{(k) is periodic ink
with periodN.

Example. x(0) = 1,x(1) = 2,x(2) = 3,x(3) =4

3
X(k) = Z x(n)e @v* - k=0,1,2 3 4

Thus,

andX(1) =x(0) +x(1)e'™2 + x(2)e'm+ x(3)e¥2 =1 -2 -3 +4=-2+2; X(2) =-2;XB) =-2-2
DFT Properties

1. Linearity: If x(n) = ax,(n) + bx,(n), thenX,(k) = aX;(k) + bX,(K).
2. Symmetry: Fox(n) real, ReK(K)] = Re[X(N —K)], Im[(k)] = —Im[X(N —K)].
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3. Circular shift: By a circular shift of a sequencdided in the intaral 0s n< N — 1, we mean
that, asvaluesfall off from one end of the sequencegptlare appended to the other end. Denoting
this byx(n 00 m), we see that posie m means shift left andegaive m means shift rightThus,
%(N) = x(n 0 m) = Xy(k) = X;(Kygermowm,

4. Duality: x(n) < X(k) implies (IN)X(n) < Xx(-K).

5. Z-transform relationX(k) = X(2)| _dterkiny k=01, ..N-1.

6. Circular cawolution: x,(n) = N0 x,(Mx(n © M) = )T x,(n © £)x(€) wherex,(n © m)
corresponds to a circular shift to the right for pesim.

Onefast algorithm for calculating DFTs is the ra@ixast Fourier transfornmdeveloped by JW. Cooky
and JW. Tucker. Consider thewio-point DFTX(K) = ! x(n)e'@72rk k = 0, 1. Cleast, X(K) =
X(0) +x(1)e'™. So,X(0) =x(0) +x(1) andX(1) =x(0) —x(1). This process can bextended to
DFTs of lengthN = 2, wherer is a posive integer. For N = 2, decompose thd-point DFT into
two N2-point DFTs Then, decompose dadl/2-point DFT intotwo N4-point DFTs, and so on
until eventually we lave N/2 two-point DFTs. Computing these as indicatedvah we combine
them intoN/4 four-point DFTs and theiN/8 eight-point DFTs, and so on, until the DFT is
computedThe total number of DFT operations (fordaN) is O(N?), and that of the FFT (N
log, N), quite a aving for large N.
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FIGURES 19.12.1 to 19.13. The “Oregonator” is a periodic chemical reaction describable by three nonlinear first-
order dfferential equationsThe resultsKigure 19.12 lillustrate the periodic nature of the major chemical versus
time. Figure 19.12.5hows the phase diagram of two of the reactants,Fagadre 19.12.3s the three-dimensional
phase diagram of all reactanthe numerical computation was done using a fourth-order Runge-Kuta method on
Mathematica ¥ Waltraud Ruéger at the Geagia Institute 6 Technolog.
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Software
Some available software is listed here.

General Packages

General software packages include Maple, Mathematica, and Matlab. All contain algorithms for handling
a large variety of both numerical and symbolic computations.

Special Packages for Linear Systems

In the IMSL Library, there are three complementary linear system packages of note.

LINPACK is a collection of programs concerned wdilect methods for general (or full) symmetric,
symmetric positive definite, triangular, and tridiagonal matrices. There are also programs for least squares
problems, along with the QR algorithm for eigensystems and the singular value decompositions of
rectangular matrices. The programs are intended to be completely machine independent, fully portable,
and run with good efficiency in most computing environments. The LINPACK User’s Guide by Dongarra
et al. is the basic reference.

ITPACK is a modular set of programs for iterative methods. The package is oriented toward the sparse
matrices that arise in the solution of PDEs and other applications. While the programs apply to full
matrices, that is rarely profitable. Four basic iteration methods and two convergence acceleration methods
are in the package. There is a Jacobi, SOR (with optimum relaxation parameter estimated), symmetric
SOR, and reduced system (red-black ordering) iteration, each with semi-iteration and conjugate gradient
acceleration. All parameters for these iterations are automatically estimated. The practical and theoretical
background for ITPACK is found in Hagemen and Young (1981).

YALEPACK is a substantial collection of programs for sparse matrix computations.

Ordinary Differential Equations Packages

Also in IMSL, one finds such sophisticated software as DVERK, DGEAR, or DREBS for initial value
problems. For two-point boundary value problems, one finds DTPTB (use of DVERK and multiple
shooting) or DVCPR.

Partial Differential Equations Packages

DISPL was developed and written at Argonne National Laboratory. DISPL is designed for nonlinear
second-order PDEs (parabolic, elliptic, hyperbolic (some cases), and parabolic-elliptic). Boundary con-
ditions of a general nature and material interfaces are allowed. The spatial dimension can be either one
or two and in Cartesian, cylindrical, or spherical (one dimension only) geometry. The PDEs are reduced
to ordinary DEs by Galerkin discretization of the spatial variables. The resulting ordinary DEs in the
timelike variable are then solved by an ODE software package (such as GEAR). Software features
include graphics capabilities, printed output, dump/restart/facilities, and free format input. DISPL is
intended to be an engineering and scientific tool and is not a finely tuned production code for a small
set of problems. DISPL makes no effort to control the spatial discretization errors. It has been used to
successfully solve a variety of problems in chemical transport, heat and mass transfer, pipe flow, etc.

PDELIB was developed and written at Los Alamos Scientific Laboratory. PDELIB is a library of
subroutines to support the numerical solution of evolution equations with a timelike variable and one
or two space variables. The routines are grouped into a dozen independent modules according to their
function (i.e., accepting initial data, approximating spatial derivatives, advancing the solution in time).
Each task is isolated in a distinct module. Within a module, the basic task is further refined into general-
purpose flexible lower-level routines. PDELIB can be understood and used at different levels. Within a
small period of time, a large class of problems can be solved by a novice. Moreover, it can provide a
wide variety of outputs.

DSS/2 is a differential systems simulator developed at Lehigh University as a transportable numerical
method of lines (NMOL) code. See also LEANS.

FORSIM is designed for the automated solution of sets of implicitly coupled PDEs of the form
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Z—Ut‘ = cp,(x,t,ui v} (u,)x(u,)xx(u])xx) fori=1...,N
The user specifies thgin a simple FORTRAN subroutine. Finite difference formulas of any order may

be selected for the spatial discretization and the spatial grid need not be equidistant. The resulting system
of time-dependent ODEs is solved by the method of lines.

SLDGL is a program package for the self-adaptive solution of nonlinear systems of elliptic and
parabolic PDEs in up to three space dimensions. Variable step size and variable order are permitted. The
discretization error is estimated and used for the determination of the optimum grid and optimum orders.
This is the most general of the codes described here (not for hyperbolic systems, of course). This package
has seen extensive use in Europe.

FIDISOL (finite difference solver) is a program package for nonlinear systems of two-or three-
dimensional elliptic and parabolic systems in rectangular domains or in domains that can be transformed
analytically to rectangular domains. This package is actually a redesign of parts of SLDGL, primarily
for the solution of large problems on vector computers. It has been tested on the CYBER 205, CRAY-
IM, CRAY X-MP/22, and VP 200. The program vectorizes very well and uses the vector arithmetic
efficiently. In addition to the numerical solution, a reliable error estimate is computed.

CAVE is a program package for conduction analysis via eigenvalues for three-dimensional geometries
using the method of lines. In many problems, much time is saved because only a few terms suffice.

Many industrial and university computing services subscribe to the IMSL Software Library. Announce-
ments of new software appearDirections a publication of IMSL. A brief description of some IMSL
packages applicable to PDEs and associated problems is now given. In addition to those packages just
described, two additional software packages bear mention. The first of these, the ELLPACK system,
solves elliptic problems in two dimensions with general domains and in three dimensions with box-
shaped domains. The system contains over 30 numerical methods modules, thereby providing a means
of evaluating and comparing different methods for solving elliptic problems. ELLPACK has a special
high-level language making it easy to use. New algorithms can be added or deleted from the system
with ease.

Second, TWODEPEP is IMSL's general finite element system for two-dimensional elliptic, parabolic,
and eigenvalue problems. The Galerkin finite elements available are triangles with quadratic, cubic, or
quartic basic functions, with one edge curved when adjacent to a curved boundary, according to the
isoparametric method. Nonlinear equatons are solved by Newton's method, with the resulting linear
system solved directly by Gauss elimination. PDE/PROTRAN is also available. It uses triangular
elements with piecewise polynomials of degree 2, 3, or 4 to solve quite general steady state, time-
dependent, and eigenvalue problems in general two-dimensional regions. There is a simple user input.
Additional information may be obtained from IMSL. NASTRAN and STRUDL are two advanced finite
element computer systems available from a variety of sources. Another, UNAFEM, has been extensively
used.
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19.13 Experimental Uncertainty Analysis

W.G. Steele and H.W. Coleman

Introduction

The goal of amxperiment is to answer a question by measuring afspeaiiable X, or by determining
a resultr, from a functional relationship among measwadables

F=r(X0 Xgre Xt X)) (19.13.1)

In all experiments there is some error thagvents the measurement of the tuadue of eactvariable,
and therefore, prents the determination of,..

Uncertainty analysis is a technique that is used to estimate theairdbout a measuredriable or
a determined result within which the trua@ue is thought to lie with a certaiegiee of confidencé\s
discussed by Coleman and Steele (1989), uncertainty analysisisemely useful tool for all phases
of an experimental program from initial planning (general uncertainty analysis) to detailed design,
debugging, test operation, and data analysis (detailed uncertainty analysis).

The application of uncertainty analysis in engineeringghalyed considerably since the classic paper
of Kline and McClintock (1953). Bvelopments in the fielddwe been especially rapid and sigrant
over the past decade, with the methods formulated\ternethy and cevorkers (1985) that were
incorporated it ANSI/ASME Standards in (1984) and (1986) being superseded by the more rigorous
approach presented in the Internationejaization for Standardization (I$3Guide to the Exgssion
of Uncertainty in Meagement(1993) This guide, published in the name of ISO and six other interna-
tional aganizations, has ieverythingbut name established aminternationakxperimental uncertainty
standard.

The approach in the 8Guide deals with Type A” and “Type B” catgories of uncertainties, not
the more traditional engineering egries of systematic (bias) and precision (random) uncertainties,
and is of sfficient compéxity that its application in normal engineering practice iskefi This issue
has been addressegd AGARD Working Group 15 on QualitAssessment foVind Tunnd Testing, by
the Standards Subcommittee of KIAA Ground Ted Technical Committee, and by ASME Com-
mittee PTC 19.1 that isrising the ANSI/ASME Standard (1986)The documents issued bwd of
these groupsAGARD-AR-304, 1994) and (AIAA Standard S-071-1995, 1995) and in preparation by
theASME Committee present and discuss the additional assumptions necessavéosaelsis compk
“large sample” methodology that is consistent with th@ Ghiide,that is applicable to theast majority
of engineering testing, including most single-sample tests, and that retains the use of the traditional
engineering concepts of systematic and precision uncertaifitiesrange ofvalidity of this “large
sample” approximation has been presented by Steele et al. (1994) and by Coleman and Steele (1995).
The authors of this section are also preparing a second edition of Coleman and Steele (1989), which
will incorporate the I® Guide methodology and will illustrate its use in all aspects of engineering
experimentation.

In the following, the uncertainties of imddual measuredariables and of determined results are
discussedThis section concludes with awerview of the use of uncertainty analysis in all phases of
an experimental program.

Uncertainty of a Measured Variable

For a measuredariable,X;, the total error is caused by both precision (random) and systematic (bias)
errors This relationship is shwn in Figure 19.13.1The possible measuremergtlues of thevariable
are scattered in a didtution (here assumed Gaussian) around the parent populationum@ae parent
population mean ffers from ¥,),.. by an amount called the systematic (or bias)refoThe quantity
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FIGURE 19.13.1 Errors in the measurement of variable X

B, is the total fixed error that remains in the measurement process after all calibration corrections have

been made. In general, there will be several sources of bias error such as calibration standard errors,
data acquisition errors, data reduction errors, and test technique errors. There is usually no direct way
to measure these errors, so they must be estimated.

For each bias error sourc)(, the experimenter must estimate a systematic uncertainty (or bias
limit), (B)),, such that there is about a 95% confidence thgtXB(3),. Systematic uncertainties are
usually estimated from previous experience, calibration data, analytical models, and the application of
sound engineering judgment. For each variable, there will be K;sef, elemental systematic uncer-
tainties, (B),, for the significant fixed error sources. The overall systematic uncertainty for vaiable
is determined from these estimates as

B? = Z(B,)i (19.13.2)

For a discussion on estimating systematic uncertainties (bias limits), see Coleman and Steele (1989).

The estimate of the precision error for a variable is the sample standard deviation, or the estimate of
the error associated with the repeatability of a particular measurement. Unlike the systematic error, the
precision error varies from reading to reading. As the number of readlngsd,a particular variable
tends to infinity, the distribution of these readings becomes Gaussian.

The readings used to calculate the sample standard deviation for each variable must be taken over
the time frame and conditions which cover the variation in the variable. For example, taking multiple
samples of data as a function of time while holding all other conditions constant will identify the random
variation associated with the measurement system and the unsteadiness of the test condition. If the
sample standard deviation of the variable being measured is also expected to be representative of other
possible variations in the measurement, e.g., repeatability of test conditions, variation in test configura-
tion, then these additional error sources will have to be varied while the multiple data samples are taken
to determine the standard deviation.

When the value of a variable is determined as the mXan, N, reddings, then the sample standard
deviation of the mean is

2

s, = %\Iﬁéi“xi)k - xi]zg (19.13.3)
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where

_ Z'(Xi)k
X=X (19.13.4)

It must be stressed that thédereadings have to be taken over the appropriate range of variations for
X as described above.

When only a single reading of a variable is available so that the value used for the vaXalbhers
Np previous readingsXg;),, must be used to find the standard deviation for the variable as

S, =§ﬁi%xﬂ)k—xpg§ (19.13.5)

where

Np
X zl\tg(xﬂ)k (19.13.6)

Another situation where previous readings of a variable are useful is when a small current sample
size,N,, is used to calculate the mean valog, of a variable. If a much larger set of previous readings
for the same test conditions is available, then it can be used to calculate a more appropriate standard
deviation for the variable (Steele et al., 1993) as

S = i (19.13.7)
bl i\
AN
whereN,; is the number of current readings averaged to deterrfjne S@nd is computebllg“rom

previous readings using Equation (19.13.5). Typically, these larger data sets are taken in the early “shake-
down” or “debugging” phases of an experimental program.

For many engineering applications, the “large sample” approximation applies, and the uncertainty for
variablei (X, or X)) is

8 +(28)

where§ is found from the applicable Equation (19.13.3), (19.13.5) or (19.13.7). The irXetval, or

X, + U, as appropriate, should contai),. 95 times out of 100. If a small number of samphs (

or N, < 10) is used to determmSi 6?;< , then the “large sample” approximation may not apply
and the methods in ISO (1993) or Coleman and Steele (2995) should be usedJto find

U, = (19.13.8)

Uncertainty of a Result

Consider an experimental result that is determined foeasured variables as

r=r(X1, Xy Xiyonsy XJ)
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where some variables may be single readings and others may be mean values. A typical mechanical
engineering experiment would be the determination of the heat transfer in a heat exchanger as

q:mcp(To_Ti) (19.13.9)

whereq is the heat ratem s the flow ratg,is the fluid specific heat, arij and T, are the heated
fluid outlet and inlet temperatures, respectively. For the “large sample” approximitisrfound as

U =, B +(25) (19.13.10)

whereB, is the systematic uncertainty of the result

J J-1 J
B? = Z(eis,)2 +2Z 6,6,B, (19.13.11)
1= 1=1 K=I+
with
= (19.13.12)
[0),8
andS§ is the standard deviation of the result
2 2
§ = Z(eig) (19.13.13)

The termB, in Equation (19.13.11) is the covariance of the systematic uncertainties. When the
elemental systematic uncertainties for two separately measured variables are related, for instance when
the transducers used to measure different variables are each calibrated against the same standard, the
systematic uncertainties are said to be correlated and the covariance of the systematic errors is nonzero.
The significance of correlated systematic uncertainties is that they can have the effect of either decreasing
or increasing the uncertainty in the resBlt.is determined by summing the products of the elemental
systematic uncertainties for variablesndk that arise from the same source and are therefore perfectly
correlated (Brown et al., 1996) as

B, = Z(B,)Q(Bk)a (19.13.14)

a=.

wherelL is the number of elemental systematic error sources that are common for measeandKts
If, for example,

r=r(X, %,) (19.13.15)

and it is possible for portions of the systematic uncertaiBtiemdB, to arise from the same source(s),
Equation (19.13.11) gives

B? = 078 + 6282 +26,6,B,, (19.13.16)

© 1999 by CRC Press LLC



19-122 Section 19

For a case in which the measurement¥X,0and X, are each influenced by four elemental systematic
error sources and sources two and three are the same fof; it X,, Equation (19.13.2) gives

B =(8); +(B); +(8); *(B); (19.13.17)

and

822 = (82)2 +(Bz)2 +(Bz)2 +(Bz)2 (19.13.18)

while Equation (19.13.14) gives

B, =(B),(B.), +(B),(B,), (19.13.19)

In the general case, there would be additional terms in the expression for the standard deviation of
the result,S, (Equation 19.13.13) to take into account the possibility of precision errors in different
variables being correlated. These terms have traditionally been neglected, although precision errors in
different variables caused by the same uncontrolled factor(s) are certainly possible and can have a
substantial impact on the value $f(Hudson et al., 1996). In such cases, one would need to acquire
sufficient data to allow a valid estimate of the precision covariance terms using standard statistical
techniques (ISO, 1993). Note, however, that if multiple test results over an appropriate time period are
available, these can be used to directly deterrgin€his value of the standard deviation of the result
implicitly includes the correlated error effect.

If a test is performed so th& multiple sets of measuremends;,(X,, ..., X;), at the same test
condition are obtained, theM results can be determined using Equation (19.13.1) and a mean result,
r, can be determined using

F :|\1/|Zrk (19.13.20)
The standard deviation of the samplevbfesults,S, is calculated as

2
M 2|:"r

g
= r.—r) 0 (19.13.21)
ARETED ANl

The uncertainty associated with the mean result, for the “large sample” approximation is then

| 2
U, =B’ +(25) (19.13.22)
where
S = SM (19.13.23)
.

and whereB, is given by Equation (19.13.11).
The “large sample” approximation for the uncertainty of a determined result (Equations (19.13.10)
or (19.13.22)) applies for most engineering applications even when some of the variables have fewer
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than 10 samples. A detailed discussion of the applicability of this approximation is given in Steele et
al. (1994) and Coleman and Steele (1995).

The determination o), from § (or S) andB, using the “large sample” approximation is called
detailed uncertainty analysis (Coleman and Steele, 1989). The intdpral) + U, (or U;) should
containr,,. 95 times out of 100. As discussed in the next section, detailed uncertainty analysis is an
extremely useful tool in an experimental program. However, in the early stages of the program, it is also
useful to estimate the overall uncertainty for each varidhleThe overall uncertainty of the result is
then determined as

J

Uz = Z(eiui)2 (19.13.24)

This determination ob, is called general uncertainty analysis.

Using Uncertainty Analysis in Experimentation

The first item that should be considered in any experimental program is “What question are we trying
to answer?” Another key item is how accurately do we need to know the answer, or what “degree of
goodness” is required? With these two items specified, general uncertainty analysis can be used in the
planning phase of an experiment to evaluate the possible uncertainties from the various approaches that
might be used to answer the question being addressed. Critical measurements that will contribute most
to the uncertainty of the result can also be identified.

Once past the planning, or preliminary design phase of the experiment, the effects of systematic errors
and precision errors are considered separately using the techniques of detailed uncertainty analysis. In
the design phase of the experiment, estimates are made of the systematic and precision un&:rtainties,
and &, expected in the experimental result. These detailed design considerations guide the decisions
made during the construction phase of the experiment.

After the test is constructed, a debugging phase is required before production tests are begun. In the
debugging phase, multiple tests are run and the precision uncertainty determined from them is compared
with the 23 value estimated in the design phase. Also, a check is made to see if the test results plus
and minudJ, compare favorably with known results for certain ranges of operation. If these checks are
not successful, then further test design, construction, and debugging is required.

Once the test operation is fully understood, the execution phase can begin. In this phase, balance
checks can be used to monitor the operation of the test apparatus. In a balance check, a quantity, such
as flow rate, is determined by different means and the difference in the two determinasawmpared
to the ideal value of zero. For the balance check to be satisfied, the quenigy be less than or equal
to U,.

Uncertainty analysis will of course play a key role in the data analysis and reporting phases of an
experiment. When the experimental results are reported, the uncertainties should be given along with
the systematic uncertain,, the precision uncertaintyS2 and the associated confidence level, usually
95%.
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19.14 Chaos
R. L. Kautz

Introduction

Since the time of Mwvton, the science of dynamics haswyded quantitave descriptions ofegular
motion, from a pendululm swing to a planet orbit, expressed in terms of ffierential equations.
However, the role of NMwtonian mechanics has recentiypanded with the realization that it can also
describe chaotic motion. In elementary teramsoscan be defined gseudorandombeleavior obseved

in the steady-state dynamics of a deterministinlinear system How can motion be pseudorandom,
or random according to statistical tests and yet be entirely predizTdhteis just one of the paraxkes

of chaotic motion, which is globally stableit locally unstable, predictable in principbeit not in
practice, and geometrically conaplbut defved from simple equations.

The strange nature of chaotic motimas first understood by Henri Poincaré, who established the
mathematical foundations of chaos in a treatise published in 1890 (Holmes, 1886)etthe practical
importance of chaosegan to be widely appreciated only in the 196Gsjirming with thework of
Edward Lorenz (1963), a meteorologist who disred chaos in a simple model ftwid cawection.
Today, chaos is understood &zplain a widevariety of apparently random natural phenomena, ranging
from drippingfaucets (Martien et al., 1985), to tfietter of afalling leaf Tanabe and Kaike, 1994),
to the iregular rotation of a moon of Saturtisdom et al., 1984).

Although chaos is used purposely toyide an element of unpredictability in sonogs and carival
rides (Kautz and Hugard, 1994), it is important from an engineering point @&vwvprimarily as a
phenomenon to bavoided. Perhaps the simplest scenario arises when a nonlinear mechanism is used
to achéeve a desiredféect, such as the synchronizationwbtoscillators. In may such cases, thegree
of nonlinearity must be chosen carefully: strong enough to ensure the défsotde not so strong
that chaos results. In another scenario, an engineer might be required to deal with an intrinsically chaotic
system. In this case, if the system can be modeled mathenyaticah a small feedback signal can
often be applied to eliminate the chaos (Ott et al., 1990)example, bw-enagy feedback has been
used to suppress chaotic bebr in a thermal covection loop (Singer et al., 1998s such conside
ations suggest, chaos in rapidly becoming an important topic for engineers.

Flows, Attractors, and Liapunov Exponents

Dynamic systems can generally be described mathematically in terms of a s$tdrential equations
of the form.

dx(t)/dt = F[x(t)] (19.14.1)

where x = (x, ..., Xy) is anN-dimensionalvector called thestate vector and thevector functionF =
F.(x), ..., Fy(X)) defines bw the statevector changes with time. In mechanics, the stat@bles x; are
typically the positions angelocities associated with the potential and kinetiagiae of the system.
Because the statector at times > 0 depends only on the initial statectorx(0), the system defined
by Equation (19.14.1) is deterministic, and its motion is in prinagéetly predictable.

The properties of a dynamic system are often visualized most readily in terms of trajedtprie
plotted instate spacewhere points are defined by the coordinatgs. (., ). As anexample, consider
the motion of a damped pendulunfided by the normalized equation

d26/dt? = —sin® - pd8)/dt (19.14.2)
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whichexpresses the angular accelematiéd/dt? in terms of the gwitational torque — $i6 and a damping
torque —pd6/dt proportional to the angulaelocity v = db/dt. If we define the stateector as x =x;,X,)

= (8,v), then Equation (19.14.2) can be written in the form of Equation (19.14H)wit(x,, — SinX,

— PXy). In this case, the state spacews dimensional, and a typical trajectory is a spiral, asvshn
Figure 19.14.1for the initial condition x(0) = (0,1). If additional trajectories, corresponding to other
initial conditions, were plotted ifrigure 19.14.1we would obtain a set of intedged spirals, all
converging on the poink = (0,0). Because the direction of a trajectory passing througvea goint

is uniquely defined by Equation (19.14.1), state—space trajectoriesvearcross, and, by analogy with
the motion of a fluid, the set of all of trajectories is callébha.

1.5

V=T
>

0.5

0.0
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'1'-°7r/2 -w/4 0 /4 /2
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FIGURE 19.141 The state-space trajectoxit) for a pendulum with a damping déieient p = 0.2 for the initial
condition x(0) = (0,1) The evolution of trajectories initialized in a small circle surrounding (0,1) is indicated
by the ellipses plotted at time intais of At = 1.5.

The tendeay of a flow to cawerge bward a single point or other restricted subset of state space is
characteristic of dissipae systems ke the damped pendulum. Such an asymptotic set, called an
attracting set oattractor, can be a fied point (for whit F(x) = 0) as inFigure 19.14.1but might also
be a periodic or chaotic trajecyoiThe cawergence of neighboring trajectories is suggesteBigure
19.14.1by a series of ellipses spaced at time iratlsrAt = 1.5 that track thediv of all trajectories
originating within the circle spefoed att = 0. In general, the contraction of afimitesimal state—space
volume V as it noves with the fbw is gven by

v1tov/ot=0F (19.14.3)

where 0 - F = £, dF/x is the dvergence ofF. For the damped pendulurf, - F = p, so the area of
the ellipse sbwn in Figure 19.14.1shrinksexponentially asv(t) = V(0) exp(—pt). The contraction of
state—spaceolumes explains theexistence of attractors in dissipa systemshut in consevatve
systems such as the pendulumhvait= 0, state—spacslumes are presezd, and trajectories are instead
confined to constant-ergy sufaces.

While theexistence of chaotic betior is generally diicult to predict, Wwo essential conditions are
easily stated. First, the conepltopology of a chaotic trajectory caist only in a state—space of
dimensio N = 3. Thus, the pendulum defined by Equation (19.14.2) cannot be chaotic dblcaus
for this system. Second, a system must be nonlineaexhibit chaotic bebvior. Linear systems, for
which ay linear combinatiorc,x,(t) + c,x,(t) of two solutionsx,(t) andx,(t) is also a solution, are
mathematically simple and amenable to analysis. In contrast, nonlinear systems @r@rntiteir
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.’B1=
FIGURE 19.142 A trajectoryx(t) and a neighboring trajectorx (t) plotted in state space from timgto t,. The
vectos eft,) ande(t,) indicate the eviation d X (t) from x(t) at timest, andt,.

intractability. Thus, chaotic bedvior is of necessitygxplored more frequently by numerical simulation
than mathematical analysisfact that helpgxplain why the pevalence of chaowas disovered only
after the adent of dficient computation.

A useful criterion for thexistence of chaos can bevéloped from an analysis of a trajectsriocal
stability. As sketched irFigure 19.14.2the local stability of a trajectorytx is determined by considering
a neighboring trajectgr X (t) initiated by an infinitesimalaiation ef,) from x() at timet,. The deviation
vector ef) = X (t) — x(t) at timest, > t, can beexpressed in terms of the Jacobian matrix

J; (tl’to) = 0x, (tl)/axj (to) (19.14.4)

which measures the change in staeiablex; at timet, due to a change iy at timet,. From the
Jacobiats definition, we bve e(t,) = J(t,,tp)e(ty). Although the local stabilityfox(t) is determined simply
by whether eviations gow or decay in time, the analysis is complicated byftw that dviation
vectors can also rotate, as suggestdeddare 19.14.2Fortunatey, an arbitrary eviation can be written
in terms of the eigwectors € of the Jacobian, defined by

Itt) e =, (t,.t) e (19.14.5)

which are simply scaled by the eigalues(t,,t,) without rotation Thus, theN eigewalues of the
Jacobian matrix pvide complete information about theogith of deviations Anticipating that the
asymptotic gowth will be exponential in time, we define théapunov exponents

A= |im7|n“i(tl’t°)‘

t o0 t —

1 0

(19.14.6)

Because @y deviation can be biken into components thatayv or decay asymptotically axp(Ait),
the N exponents associated with a trajectory determine its local syabilit

In dissipaive systems, chaos can bdided as motion on an attractor for which one or more Liapun
exponents are posie. Chaotic motion thus combines global stability with local instability in that motion
is confined to the attraatogenerally a boundedegion of state spacequt small dviations gow
exponentially in timeThis mixture of stability and instability in chaotic motioreigdent in the betvior
of an infinitesimal dviation ellipsoid similar to thénite ellipse sbwn in Figure 19.14.1Because some
A; are positre, an ellipsoid centered on a chaotic trajectoryexplandexponentially in some directions.
On the other hand, because state-spaltenes &vays contract in dissipae systems and the asymptotic
volume of the ellipsoid scales agp(At), whereA = I, A, the sum of the egaive exponents must
be greater in magnitude than the sum of the ipesikponents Thus, a eviation ellipsoid tracking a
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chaotic trajectorgxpands in some directions while contracting in othemsvéder, because an arbitrary
deviation almost Bvays includes a component in a directioreqansion, nearly all trajectories neigh-
boring a chaotic trajectoryivierge exponentialy.

According to our definition of chaos, neighboring trajectories miverge exponentially and yet
remain on the attraatoHow is this possible? i@en that the attractor is cined to a boundecdegion
of state space, perpetualvegence can occur only for trajectories thdfedi infinitesimaly. Finite
deviations gow exponentially at firsbut are limited by the bounds of the chaotic attractoresadtually
shrink againThe full picture can be understood by @aling theevolution of a small state-spagelume
selected in the neighborhood of the chaotic attrattdially, the volume expands in some directions
and contracts in other§Vhen theexpansion becomes too greagwever, the volume legins to fold
back on itself so that trajectories initially separated byetipansion are brought close togethgaia.

As time passes, this stretching and folding is repeatedandover in a process that is oftetkdned
to kneading bread or pullingfts.

Because all neighboringplumes approach the attractthe stretching and folding process leads to
an attracting set that is arfimtely compex filigree of interleved sufaces Thus, while the dferential
equation that defines chaotic motion cawény simple, the resulting attractor is highly coatplChaotic
attractordfall into a class of geometric objects cdlfeactals, which are characterized by the presence
of structure at arbitrarily small scales and by a dimension that is generally fradhibilaltheexistence
of objects with dimensiorilling between those of a point and a line, a line andfacjror a sdiace
and avolume may seem mysterious, fractional dimensions result when dimensidinedday fow
much of an object is apparent\vairious scales of resolutioRor the dynamical systems encompassed
by Equation (19.14.1), the fractal dimensid of a chaotic attractdialls in the range of D <N
where N is the dimension of the state spatkus, the dimension of a chaotic attractor igéaenough
that trajectories can continuakplore rew territory within a boundedegion of state spadaut small
enough that the attractor occupiesvotume of the space.

Synchronous Motor

As anexample of a system thakhibits chaos, we consider a simple model for a synchronous motor
that might be used in a clocks shown in Figure 19.14.3the motor consists of a permanent-magnet
rotor subjected to a uniform oscillatory magnéigd B sint provided by the stato In dimensionless
notation, its equation of motion is

d26/dt? = —f sintsin® - pdd/dt (19.14.7)

where d?0/dt? is the angular acceleration of the mtd sint sin 8 is the torque due to the interaction
of the rotors magnetic moment with the stafwld, and pdé/dt is a viscous damping torquilithough
Equation (19.14.7) isxplicitly time dependent, it can be case in the forfiEquation (19.14.1) by

Bsint

FIGURE 19.143 A synchronous motp consisting of a permanent magnet free to rotate in a uniform magnetic
field B sint with an amplitude thataries sinusoidally in time.
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defining the stateector as< = (X;,%,,%;) = (6,v,t), wherev = db/dt is the angulavelocity, and by defining
the flow asF = (x,, - sinx; sinx; — pX,,1). The state space is thus three dimensional age kEnough
to allow chaotic motion. Equation (19.14.7) is also nonlinear due to thefesmt sin 6, since sin,
+ 6,) is not generally equal to sB) + sin8,. Chaos in this system has beewvestigated by everal
authors (Ballico et al., 1990).

By intent, the motor uses nonlinearity to synchronize the motion of the rotor with the oscillatory
stator field, so ievolvesexactly once during each field oscillatigkithough synchronization can occur
over a range of system parameters, proper operation requires thavéhandplitudd, which measures
the strength of the nonlineayitbe chosen tge enough to produce the desired rotabionnot so lege
that chaos results. Calculating the m@atynamics fop = 0.2, we find that the rotor oscillates without
rotating forf less than 0.40 and that the intended rotation is obtained foxk@401.87 The periodic
attractor corresponding to synchronized rotation gsvehfor f = 1 in Figure 19.14.4(a)Here the three-
dimensional state-space trajectory is projected ont@the) or (8,v) plane, and a dot marks the point
in the rotationcycle at whicht = 0 modulo 2t As Figure 19.14.4(aindicates, the rotor adnces by
exactly 2t during each dve cycle.

2 T T T
(a) rf=1

1W

v =2x

ROTOR VELOCITY

- -7 /2 0 /2 ™
ROTOR ANGLE 6 = x;

FIGURE 19.144 State-space trajectories projected onto o} or (0,v) plane, sbwing attractors of the syn-
chronous motor fop = 0.2 and two dve amplitudesf = 1 and 3. Dots mark the state of the system at the beginning
of each dive cycle ¢ = 0 modulo 2). The angles 6 = Tt and +t are equwalent.

The utility of the motor hinges on the stability of the synchronous rotation patawn &hFigure
19.14.4(a) This periodic pattern is the steady—state motion thatldps after initial transients decay
and represents the final asymptotic trajectory resulting for initial conditions chosen from a wide area of
state space. Because flmv approaches this attracting set from all neighboring points,fthet ®f a
perturbation that displaces the system from the attractor is skamttThis stability is reflected in the
Liapurov exponents of the attractok, = 0 and\, = A, = —0.100 The zeroexponent is associated with
deviations coincident with the direction of the trajectory and is a feature common to all bounded attractors

© 1999 by CRC Press LLC



19-130 Section 19

other than fted points The zeroexponent results because the system is neutrally stable with respect to
offsets in the time coordinat&€he exponents of —0.100 are associated wighiations transerse to the
trajectory and indicate that thesevidtions decayexponentially with a characteristic time of 1.Gwdr
cycles The regaive exponents imply that the synchmpbetween the rotor and tffield is maintained

in spite of noise or smallariations in system parameters, as required of a clockrmoto

For diive amplitudes greater thérm 1.87, the rotor generally does novailce by preciselyr2during
every diive cycle, and its motion is commonly chaottm example of chaotic betvior is illustrated for
f = 3 by the trajectory plotted iRigure 19.14.4(bpver an inteval of 10 dive cycles. In this figure,
sequentially numbered dots mark hegibning of each dve cycle. When consideredycle by cycle,
the trajectory pves to be a haphazard sequence of oscillationsafdrrotations, andeverse rotations.
Although we might suppose that this motion is just an initial transient, it is instead characteristic of the
steady-state bewior of the mota. If extended, the trajectory continued with an apparently random
mixture of oscillation and rotation, without approaching a reapet/cle. The motion is aptly described
as chaotic.

The geometry of the chaotic attractor sample#figure 19.14.4(b)s revealed more fully in Figure
19.14.5. Here we plot poin{®,v) recording the instantaneous angle amtbcity of the rotor at the
beginning of each dve cycle for 100,000 succese cycles,Figure 19.14 . isplays the three-dimen-
sional attractor calle@ Poincaré section at its intersection with the plasmé = x; = 0 modulo 2,
corresponding to edualent times in the dre cycle. For the periodic attractor dfigure 19.14.4(a)the
rotor returns to the same position avelocity at the bginning of each dve cycle, so its Poincaré
section is a single point, the dot in tfiigure.For chaotic motion, in contrast, we obtain the capl
swirl of points slbwn in Figure 19.14.51f the system is initialized at a poifdar from the swirl, the
motion quickly cowverges to this attracting set. On succeedingediycles, the state of the system jumps
from one part of the swirl to another in an apparently rani@stmon that continues infileitely. As the
number of plotted points approachesriity, the swirl becomes a cross section of the chaotic attracto
Thus,Figure 19.14.%pproximates a slice through th&mite filigree of interleved sufaces that compose
the attracting set. In this case, the fractal dimension of the attractor is 2.52 and that of its Poincaré
section is 1.52.

V=X

ROTOR VELOCITY

- -2 0 w2 ™
ROTOR ANGLE 6=z,
FIGURE 19.145 Poincaré section of a chaotic attractor of the synchronous motopwith2 and = 3, obtained

by plotting points X;,x,) = (6,v) corresponding to the position and velocity of the rotor at édgehbing of 100,000
succesise dive cycles.
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The computed Liapwv exponents of the chaotic solutioh@= 0.2 and = 3 are\; = 0,A, = 0.213,
andA,; = —0.413As for the periodic solution, the zesaponent implies neutral stability associated with
deviations directed along a\gn trajectoy. The posiive exponent, which signifies the presence of chaos,
is associated withatiations trangerse to the igen trajectorybut tangent to the stace of the attracting
set in which it is embedded@he positve exponent implies that suchedations gow exponentially in
time and that neighboring trajectories on the chaotic attrattengd exponentialy, a property charac-
teristic of chaotic motionThe regaive exponent is associated witladations transerse to the siece
of the attractor and assures thgonential decay of displacements from the attractingT$ets, the
Liapunov exponents reflect both the stability of the chaotic attractor and the instability\efraaaotic
trajectory with respect to neighboring trajectories.

One sequence of a pogé Liapurov exponent is a practical limitation on our ability to predict the
future state of a chaotic systefhis limitation is illustrated irFigure 19.14.6where we plot aigen
chaotic trajectory (solid line) and three perturbed trajectories (dashed lines) that resideting the
initial phase of the igen solution byarious @viationse,(0). When the initial angularftset ise,(0) =
103 radian, the perturbed trajectory (short dash) closely trackswtbe gajectory for aboutgen dive
cycles before the ediation become significanAfter seven dive cycles, the perturbed trajectory is
virtually independent of theiwen trajectoy, even though it is confined to the same attracmilarly,
initial offsets of 166 and 16° radian lead to perturbed trajectories (medium and long dash) that track
the dgven trajectory for about 12 and 17wdrcycles, respedtely, before @viations become significant.
These results reflect tliact that small é/iations gow exponentially and, in the present case, increase
on average by dactor of 10every 1.7 dive cycles. If the position of the rotor is to be predicted with
an accurey of 10 radian after 20 dve cycles, its initial angle must be @&wn to better than 1@
radian, and the calculation must be carried out with at least 14icignidigits. If a similar prediction
is to be madever 40 dive cycles, then 25 significant digits are requirétius, even though chaotic
motion is predictable in principle, the state of a chaotic system can be accurately predicted in practice
for only a short time into the futurédccording to Lorenz (1993), thisffect explains why weather
forecasts are of limited sidigance kyond a éw days.
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TIME  t/2n

FIGURE 19.146 Rotor angle as a function of time for chaotic trajectories of the synchronous mdtqr wid.2
ard f = 3. Solid line sbws a gven trajectory and dashed linesowhperturbed trajectories resulting from initial
angular @viations ofe,(0) = 102 (short dash), 8 (medium dash), and ¥0(long dash).

This pseudorandom nature of chaotic motion is illustrat&igare 19.147 for the synchronous motor
by a plot of the net rotation during each of 100 sudeesdive cycles Although this sequence of
rotations results from solving a deterministic equation, it is apparently random, jumping erratically
between foward and everse rotations ofarious magnitudes up to about 1e8alutions The situation
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FIGURE 19.147 Net rotation of a synchronous motor during each of 100 suweedsve cycles, illustrating
chaotic motion fop = 0.2 andf = 3. By definition, A8 = 8(2rm) — 6(21(n — 1)) on thenth drive cycle.

is similar to that of a digital random number genaratowhich a deterministic algorithm is used to
produce a sequence of pseudorandom numbefacinthe similarity is not coincidental since chaotic
processes often underlie such algorithms (Li, 19¥8).the synchronous matostatistical analysis
reveals almost no correlation between rotations separated by more thadrizé cycles This statistical
independence is a result of the m&tguositve Liapurov exponent. Because neighboring trajectories
diverge exponentialy, a small egion of the attractor can quicklkpand to over the entire attracto
and a small range of rotations on on&elcycle can lead to almoshy possible rotation aefv cycles
later. Thus, there is little correlation between rotations separated dy @rif/e cycles, and on this time
scale the motor appears to select randomly between the possible rotations.

From an engineering point ofew, the problem of chaotic ba¥ior in the synchronous motor can
be soled simply by selecting aigde amplitude in the range of 0.40f < 1.87 Within this range, the
strength of the nonlinearity isrlge enough to produce synchronizattmr not so lege as to produce
chaosAs thisexample suggests, it is important to recognize that erratic, apparently random motion can
be an intrinsic property of a dynamic system and is not necessarily a proexteroél noise. Searching
a real motor for a source of noiseexplain the beblvior stown in Figure 19.14.4vould bewasted
effort since the cause is hidden in a noise-fréfedintial equation. Cleaglchaotic motion is a possibility
thatevery engineer should understand.

Defining Terms

Attractor. A set of points in state space to which neighboring trajectorie®rge in the limit of lage
time.

Chaos: Pseudorandom laeior obseved in the steady-state dynamics of a deterministic nonlinear
system.

Fractal A geometric object characterized by the presence of structure at arbitrarily small scales and by
a dimension that is generally fractional.

Liapurov exponent: One ofN constants\; that characterize the asymptotgponential gowth of
infinitesimal @viations from a trajectory inreN-dimensional state spacéarious components
of a ckviation giow or decay oraverage in proportion texp(A;t).

Nonlinear systemA system of equations for which a linear combinatiomaf $olutions is not generally
a solution.

Poincaré sectiarA cross section of a state-space trajectory formed by the intersection of the trajectory
with a plane defined by a specifiealue of one stateariable.

Pseudorandom: Random according to statistical bestdeived from a deterministic process.

State spaceThe space spanned by staéetors.
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State vector: A vectox whose components are the variables, generally positions and velocities, that
define the time evolution of a dynamical system through an equation of thexfatm F(x), =
whereF is a vector function.
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For Further Information

A good introduction to deterministic chaos for undergraduates is providéthagtic and Fractal
Dynamics: An Introduction for Applied Scientists and EnginegrErancis C. Moon. This book
presents numerous examples drawn from mechanical and electrical engineering.

Chaos in Dynamical Systerhg Edward Ott provides a more rigorous introduction to chaotic dynamics
at the graduate level.

Practical methods for experimental analysis and control of chaotic systems are preseopdgmwith
Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Syssemagrint volume edited
by Edward Ott, Tim Sauer, and James A. York.
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19.15 Fuzzy Sets and Fuzzy Logic

Dan M. Frangopol

Introduction

In the sixties, Zaheh (1965) introduced the concept of fuzzy sets. Since its inception more than 30 years
ago, the theory and methods of fuzzy seagehdeveloped considerapl The demands for treating
situations in engineering, social sciences, and medicine, among other applications that aearampl

not crisp lave been strong dring forces behind theseaglopments.

The concept of the fuzzy set is a generalization of the concept of the ordinary (or crisp) set. It
introducesvagueness by eliminating the clear bougddefined by the ordinary set thgobetween full
nonmembers (i.e., grade of membership equals zero) and full members (i.e., grade of membership equals
one) According to Zaheh (1965) a fuzzyt#e defined as a collection of elements (also called objects)

x O X, where X denotes the iversal set (also called iverse of discourse) and the syrhbbdenotes

that the element x is a member of X, is characterized by a membership (also called characteristic)
function p,(x) which associates each point in X a real member in the univahtéy,1]. The value of

Ha(X) at x represents the grade of membership of A.iLarger values ofu,(x) denote higher grades

of membership of xn A. For example, a fuzzy set representing the concept of control might assign a
degree of membership of 0.0 for no control, 0.1 for weak control, 0.5 for moderate control, 0.9 for strong
control, and 1.0 for full control. From thexample, it is clear that thevb-valued crisp set [i.e., no
control (grade of membership 0.0) and full control (grade of membership 1.0)] is a particular case of
the general mulalued fuzzy seA in which p,(x) tekes itsvalues in the inteal [0,1].

Problems in engineering could fery compéx and nvolve various concepts of uncertamfhe use
of fuzzy sets in engineering has been qakiensve during this decaddhe area of fuzzy control is
one of the mosteyeloped applications of fuzzy set theory in engineering (Klirfaoider, 1988). Fuzzy
controllers lave been created for the control of robots, aircraft autopilots, and industrial processes, among
others. In Japan, faxample, so-called “fuzzy electric applianfdsve gained great success from both
technological and commercial points ofewi (Furuta, 1995). fforts are undavay to develop and
introduce fuzzy sets as a technical basis for solvar@us realworld engineering problems in which
the underlying information is comgd and imprecise. In order to aeté this, a mathematical background
in the theory of fuzzy sets is necegsér brief summary of the fundamental mathematical aspects of
the theory of fuzzy sets is presented herein.

Fundamental Notions

A fuzzy se A is represented by all its elementsard associated grades of membegrshix;,) (Klir and
Folger, 1988).

A= {pA(x1)|xl, uA(x2)|x2,..., pA(xn)|xn} (19.15.1)

where xis an element of the fuzzy set,(x;) is its grade of membership A, and thevertical bar is
empbyed to link the element with their grades of membership Equation (19.15.1) slws a discrete
form of a fuzzy setfFor a continuous fuzzy set, the membership funglig(x) is a continuous function
of x.
Figure 19.15.1illustrates a discrete and a continuous fuzzy Be¢ lager membership gradnax
(LA (X)) represents the height of a fuzzy set.
If at least one element of the fuzzy set has a membership grade of 1.0, the fuzzy set is called normalized.
Figure 19.15.2llustrates both a nonnormalized and a normalized fuzzy set.
The following properties of fuzzy sets, which afavimusextensions of the correspondingficdtions
for ordinary (crisp) sets, are fiteed herein according to Zaheh (1965) and Klir Bolger (1988).
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a(x)
@ 1.0
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1.0+
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X

FIGURE 19.151 (a) Discrete and (b) continuous fuzzy set.

Ha(x)
(a) 1.0+
X
Ha(x)
(b)
1.0 —
X

FIGURE 19.152 (a) Nonnormalized and (b) normalized fuzzy set.

Two fuzzy ses A and B are equah = B, if and only f p,(X) = pg(x) for every element x in X (see
Figure 19.15.3
The complement of a fuzzytsk is a fuzzy se A defined as

B (x) =1-p,(x) (19.15.2)

Figure 19.15.4tows both discrete and continuous fuzzy sets and their complements.
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FIGURE 19.153 Two equal fuzzy set#\ = B.
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FIGURE 19.154 (a) Discrete fuzzy se\, (b) complemeh A of fuzzy sé¢A, (c) continuous fuzzy set B, and (d)

complemeh B of fuzzy set B.

If the membership grade of each element of theeusal set X in fuzzy set B is less than or equal
to its membership grade in fuzzyt $e then B is called a subset A. This is denoted B1 A. Figure
19.15.5illustrates this situation.

The union of wo fuzzy ses A and B with membership functions,(x) andpg(X) is a fuzzy set C =
A O B such that

He(x) = max{,(X), g (¥)] (19.15.3)
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FIGURE 19.155 Fuzzy seA and its subset B.

for all x in X.
Conversey, the intersection ofato fuzzy set A and B with membership functisnu,(x) andpg(x),
respedtvely, is a fuzzy set G A n B such that

M () = min[p, (%), 1 (3)] (19.15.4)

for all x in X.
Figure 19.15.6llustrates wo fuzzy setA and B, the union $& [0 B and the intersectionts& n B.

Fa® Ha () HE()
[TIGS) Al B
(a) B
X
Pavwp® Hav B(x)
®)
X
uAr\ B(X)
(©)
/\QAA B(X)
X

FIGURE 19.156 (a) Two fuzzy sets, (b) union of fuzzy s&& O B, and (c) intersection of fuzzy sé&t n B.
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An empty fuzzy seA is a fuzzy set with a membership functip,(x) = 0 for all elements x in X
(seeFigure 19.15%

HA(X)

/ M) =0

Two fuzzy set A and B with respedte membership functiop,(x) andpg(x) are disjoint if their
intersection is empty (sd€éigure 19.15.8

FIGURE 19.157 Empty fuzzy set.

Ha(x)
UB(x)

TeS) / HE()

FIGURE 19.158 Disjoint fuzzy sets.

An a-cut of a fuzzy sieA is an ordinary (crisp) $é, containing all elements thatre a membership
grade n A greater or equal ta. Therefore,

A, ={Xlu,(x) 2 a} (19.15.5)

From Figure 19.15.9it is clear thaa = 0.5, thea-cut of the fuzzy geA is the crisp sBA, 5 = {Xs, X,
X7, Xg} and fora = 0.8, thea-cut of the fuzzy geA is the crisp seA, g = {X7, Xg}.

A fuzzy set is covex if and only if all of itsa-cuts are covex for all a in the inteval [0,1]. Figure
19.15.10shows both a covex and a nonawex fuzzy set.

A fuzzy numbe N is a normalized and oeex fuzzy set of the real line whose membership function
is pieewise continuous and for which ékists exactly one element wit pi . (x,) = L As anexample,
the real numbers close to 50 arevgh by four membership functions Figure 19.15.11

The scalar cardinality of a fuzzyts® is the summation of membership grades of all elements of X
in A. Therefore,

A= k) (19.15.6)
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FIGURE 19.159 a-cut of a fuzzy set.
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FIGURE 19.15.10 Convex and non-covex fuzzy set.
Uy (x)

1.0 —+

FIGURE 19.15.11 Membership functions of fuzzy sets of real numbers close to 50.

For example, the scalar cardinality of the fuzzy Adn Figure 19.15.4(ajs 2.5. Qwiously, an empty
fuzzy set has a scalar cardinality equal to z&lsp, the scalar cardinality of the fuzzy complement set
is equal to scalar cardinality of the original. Séterefore,

Al=|A] (19.15.7)

One of the basic concepts of fuzzy set theory isetiension principleAccording to this principle
(Dubois and Prade, 1980)ivgn (a) a function f mapping points in the ordinary set X to points in the
ordinary seY, and (b) ay fuzzy s¢ A defined on X,
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A= {1 ()00 b ()0 b (%0 I )

then the fuzzy set B = f(A) isiwen as

B = F(A) = {u (X (%,), b (o) () -os b (6, IF (0 )} (19.15.8)

If more than one element of the ordinary set X is mappefitb the same element y Y, then the

maximum of the membership grades in the fuzzAse considered as the membership grade of y in f(A).
As anexample, consider the fuzzy setkigure 19.15.4(awhere x=-2, % =2, % =3, %, = 4, and

xs = 5. Thereforg A = {0.8]-2, 0.6]2, 0.2|3, 0.4|4, 0.5|5} and f(x)%=RBy using thextension principle,

we obtain

f(A) ={max(0.8, 0.6)[2*, 0.213*, 0.4}4*, 055"}
={0.8/16, 0.281, 0.4]256, 0.5/625}
As shown by Klir andFolger (1988), dgrees of association can be represented by membership grades
in a fuzzy relation. Such a relation can be considered a general case for a crisp relation.

Let P be a binary fuzzy relation between the trisp sets X = {4, 8, 11} ahY = {4, 7} that
represents the relational concepery clos€ This relation can bexpressed as:

P(X,Y) ={1/(4,4), 0.7,(4,7), 0.6/(8,4), 0.9((8,7), 0.3{(11,4), 0.6/(11 7)}

or it can be represented by theotdimensional membership matrix

Vi Y,
X, ©@.0 070
x, ©6 097
x, B3 06F

Fuzzy relations, especially binary relations, are important fawyraagineering applications.

The concepts of domain, range, and tiverise of a binary fuzzy relation are clearlyided in Zadeh
(1971), and Kilir androlger (1988).

The max-min composition operation for fuzzy relations is asvsli(Zadeh, 1991; Klir anBolger,
1988):

Hpo(X,2) = max min[up(x,y), uQ(y,z)] (19.15.9)

forall xin X,y inY, and z in Z, where the composition of tketbinary relations P(X,Y) and ®@(2)
is defined as fotiws:

R(X,Z)=P(X,Y)-Q(Y,2) (19.15.10)

As anexample, consider thevb binary relations

P(X,Y) ={1.0|(4,4), 0.7/(4,7), 0.6/(8,4), 0.9)(8,7), 0.3|(11 4), 0.6/(11,7)}
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Q(Y.z) ={0.8((4,6), 0.5(4,9), 0.2|(4,12), 0.0|(4,15), 0.9((7,6), 0.8/(7,9), 0.5(7,12), 0.2((7,15)}

The following matrix equations illustrate the max-min composition for these binary relations

0 07 8 07 05 02
%6 E 08 05 02 0.00 0 o
0.3

0
0.9 =9 08 05 02
Mo 08 05 o020 & O
M6 06 05 020

0.6H
Zadeh (1971) and Klir and Folger (1988), define also an alternative form of operation on fuzzy
relations, called max-product composition. It is denoted as P(X,9)Y,Z) and is defined by

Mpoo(X.2) = Tgx[pp(x,y), uQ(y,z)] (19.15.11)
forall x in X, y inY, and z in Z. The matrix equation

0 07 8 07 05 02
g) 6 0 9gx 8 05 02 000 S}? 9 08 05 0 2B

' "0 foo 08 05 o020 O ' ' “0
M3 060 M6 06 05 025

illustrates the max product composition for the pair of binary relations P(X,Y) and Q(Y,Z) previously
considered.

A crisp binary relation among the elements of a single set can be denoted by R(X,X). If this relation
is reflexive, symmetric, and transistive, it is called an equivalence relation (Klir and Folger, 1988).

A fuzzy binary relation S that is reflexive

Hg(x,x) =1 (19.15.12)
symmetric
Hs(x.y) = Hg(y.X) (19.15.13)
and transitive
He(x,2) = max min[us(x,y), ps(y,z)] (19.15.14)

is called a similarity relation (Zadeh, 1971). Equations (19.15.12), (19.15.13), and (19.15.14) are valid
for all x,y,z in the domain of S. A similarity relation is a generalization of the notion of equivalence
relation.

Fuzzy orderings play a very important role in decision-making in a fuzzy environment. Zadeh (1971)
defines fuzzy ordering as a fuzzy relation which is transitive. Fuzzy partial ordering, fuzzy linear ordering,
fuzzy preordering, and fuzzy weak ordering are also mathematically defined by Zaheh (1971) and
Zimmermann (1991).

The notion of fuzzy relation equation, proposed by Sanchez (1976), is an important notion with various
applications. In the context of the max-min composition of two binary relations P(X,Y) and Q(Y,Z), the
fuzzy relation equation is as follows

PoQ=R (19.15.15)
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whereP andQ are matrices of membership funcqr(x,y) andug(y,z), respeavely, andR is a matrix
whose elements are determined from Equation (19.IEh@)solution in this case in uniqueoWever,
when R and one of the matricd Q are gven, the solution is neither guaranteedetd nor to be
unique (Klir andFolger, 1988).

Another important notion is the notion of fuzzy measurevds introduced by Sugeno (1974)
fuzzy measure is defined by a function which assigns to each crisp subset of X a number in the unit
interval [0,1]. This member represents the ambiguity associated with our belief that the crisp subset of
X belongs to the subs@. For instance, suppose we are trying to diagnose a mechanical system with
afailed component. In other terms, we are trying to assess whether this system belongs to the set of
systems with, sa safety problems withegard to failure, serviceability problems with respect to
deflections, and serviceability problems with respect to vibratibmsrefore, we might assign ew
value, say 0.2 tdailure problems, 0.3 to deflection problems, and 0.8 to vibration problEmes
collection of thesevalues constitutes a fuzzy measure of the state of the system.

Other measures including plausilyilibelief, probabiliy, and possibility measures are also used for
defining the ambiguity associated wittveral crisp defined alternags. For anexcellent treatment of
these measures and of the relationship among classes of fuzzy measures seeFsligear{@io88).

Measures of fuzziness are used to indicate ¢geed of fuzziness of a fuzzy set (Zimmermann, 1991).
One of the most used measures of fuzziness is thegperiftos measure is defined (Zimmermann, 1991)
as

d(A) = hZS(uA(xi)) (19.15.16)

where h is a posite constant and 8] is the Shannon function fieed as
S(@) = —a Ina — (1 —a) In(1 —a) for rationala. For the fuzzy set ifrigure 19.15.4(a)ddined as

A ={0.8/-2,0.6/2, 0.2]3, 0.4/4, 0.5/5}
the entry is

d(A) = h(0.5004 + 0.6730 + 0.5004 + 0.6730 + 0.6931)
=3.0399 h

Therefore, for h = 1, the enpyp of the fuzzy seA is 3.0399.

The notion of linguistiozariable, introduced by Zadeh (1973), is a fundamental notion inetked- d
opment of fuzzy logic and approximate reasonigrording to Zadeh (1973), linguisti@riables are
“variables whosegalues are not membeloat words or sentences in a natural orfeniil languageThe
motivation for the use ofvords or sentences rather than numbers is that linguistic characterizations are,
in general, less specific than numerical dnéke main diferences between fuzzy logic and classical
two-valued (e.g., true dalse) or muivalued (e.qg., trudalse, and indeterminate) logic are that (a) fuzzy
logic can deal with fuzzy quantities (e.g., mosty, fquite a éw, many, almost all) which are in general
represented by fuzzy numbers ($égure 19.15.1), fuzzy predicates (e.gexpensve, rare), and fuzzy
modifiers (e.g.extremel, unlikely), and (b) the notions of truth afalse are both alved to be fuzzy
using fuzzy trudhlsevalues (e.g.very true, mosthfalse) As Klir and Folger (1988) stated, the ultimate
goal of fuzzy logic is to mvide foundations for approximate reasonifgr a general background on
fuzzy logic and approximate reasoning and their applicatioezpert systems, the reader is referred
to Zadeh (1973, 1987), Kaufmann (1975§ghita (1985), and Zimmermann (1991), among others.

Decision making in a fuzzyrngironment is an area of continuousogth in engineering and other
fields such as economics and medicine. Bellman and Zadeh (19i#® tés process as a “decision
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process in which the goals and/or the constradimtsnot necessarily the system under control, are fuzzy
in nature’

According to Bellman and Zadeh (1970), a fuzzy goal G associated witlera gt of alternates
X = {x} is identified with a gven fuzzy set G in XFor example, the goal associated with the statement
“x should be in the vicinity of 50” might be represented by a fuzzy set whose membership function is
equal to one of the four membership functionaashin Figure 19.15.11Similarly, a fuzzy constraint
C in X is also a fuzzy set in X, such as “x should be substantiadjgrighan 20

Bellman and Zadeh (1970) fime a fuzzy decision D as the ¢lrence of goals and constraints,
assuming, of course, that the goals and constrainfiatomith one anothe Situations in which the
goals and constraints are fuzzy sets ffedént spaces, multistage decision processes, stochastic systems
with implicitly defined termination time, and their associated optimal policies are also studied in Bellman
and Zadeh (1970).
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Further Information
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I, Academic Press, & York, 1975, ly Arnold Kaufmann; (bJFuzzy Sets and Systems: Theory
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The eighteen selected papers by Lotfi A. Zadeh groupEdzry Sets and Application’kphn Wiley &
Sons, New York, 1987, edited by R. Yager, S. Ovchinnikov, R.M. Tong, and H.T. Nguyen are
particularly helpful for understanding the developments of issues in fuzzy set and possibility
theory. Also, the interview with Professor Zadeh published in this book illustrates the basic
philosophy of the founder of fuzzy set theory.
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